CS4400/5400
Programming Languages

Fall 2024
Instructor: Steven Holtzen

s.holtzen@northeastern.edu

‘ \ ‘ Northeastern University
Khoury College of Computer

and Information Sciences

mailto:s.holtzen@northeastern.edu

What is a “programming language”?

“A programming language is a
system of notation for writing @
computer programs.”

https://en.wikipedia.org/wiki/Programming_language

What is a “programming language”?

“Computer programming language,

any of various languages for @
expressing a set of detailed

instructions for a digital computer.”

https://www.britannica.com/technology/computer-
programming-language

What is a “programming language”?

JEedlE Y A programming language is a means for
CERVERLELE ynambiguously specifying a sequence of
meaning)
actions to be taken by a computer.

Programs do Programs only have

something meaning in the context of
what is executing them

Languages have Two Parts

What does it look like?

Semantics

(Function)

“Your debt is canceled”

What does it do?

Programming Languages have Two Parts

Syntax

Python

x=5
print(x)

What does it look like?

Semantics

Create a local variable
called “x” and assign it
equal to 5

Print the value of “x”
to the console

What does it do?

Is this
really
what the
program

does? What
level of

detail do we
want?

Programming Languages have Two Parts

Syntax

JavaScript

let x =5;
console.log(x)

What does it look like?

Semantics

e (Create alocal variable

called “x” and assign it
equal to 5

* Print the value of “x”

to the console

What does it do?

Programming Languages have Two Parts

Syntax

Racket

(define x 5)
(display x)

What does it look like?

Semantics

e (Create alocal variable

called “x” and assign it
equal to 5

* Print the value of “x”

to the console

What does it do?

This course is all about precisely
defining programming languages

Semantics
Syntax

Programs that run

Formal descriptions as orograms

grammars

Interpreters!

* Grow big languages out of small ones
* Implement new languages

Questions you may have?

Why are there so many programming
languages?

Which language should | learn? Should | use?

Are some languages worse than others?
Better? How can | compare them?

What distinguishes one language from
another?
Why are new languages being made today?

How are new languages made?

There are many programming languages
and there are more all the time

£

Alan Turing
1912 - 1954 -

4 5 Aﬂ)nz o Church
719031995
V@ a" . Lambda Calculus (1930s)

Babbage Difference Engine « -

Tiny Computers, Tiny Languages

There are many programming languages
and there are more all the time

The ENIAC Computer
1945

First programmable digital
computer

-First program:
feasibility of nuclear weapons

ALGOL

1958
Designed by committee

AUTODOCDE

1952, Aligk Glennie
First CompiIEd programming language

LISP
John McCarthy

#_ FORTRAN . - 1960
. John Backus

FLOW-MATIC/COBOL
Grace Hopper
1954 '

1950s: The Dawn of the Digital Era

There are many programming languages
and there are more all the time

Smalltalk
Object-oriented programming
Mid 1970s

- Growth of Digital Computers

There are many programming languages

and there are more all the time

Python' - Haskell

1990 1990

JavaScript
1995

The Modern Era

Julia
2012 .

TypeScript

2012

Swift

2014

Duality of Programming Languages:

Programming languages are mathematical constructs

Duality of Programming Languages:

Programming languages are social constructs

Why study programming languages?

* Be a more effective programmer

* Learn how to choose languages for your problem
* Learn how to design new languages if needed

* Become equipped to learn new languages quickly
* Be prepared for an evolving world

* Enjoy an aesthetic journey through this elegant
field (subjective)

Course structure and logistics

Syllabus and Course Website

e Course website is here:

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-fall24/

* Link on Canvas and my website

* Has all the course information
* Assignments
e Deadlines
 Syllabus
e Course notes (+ these slides)

You are expected
to read and be

aware of all
content in the
course syllabus!

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-fall24/

Course staff

* Instructor: Steven Holtzen

* Assistant professor at Northeastern
since 2021

 Studies probabilistic programming languages

* Teaching assistants:
e Vadym Matviichuk matviichuk.v@northeastern.edu
* Brianna Marshall marshall.br@northeastern.edu
* Abdelrahman Madkour madkour.a@northeastern.edu

mailto:matviichuk.v@northeastern.edu
mailto:marshall.br@northeastern.edu
mailto:madkour.a@northeastern.edu

You are at one of the best schools
for PL in the world

https://prl.khoury.northeastern.edu/

Many of the tools
we use in this class

were developed

here!

https://prl.khoury.northeastern.edu/

Module 1: Introduction

* Become familiar with inductively defined data and
functional programming in Racket

» See the design recipe for programming with inductively
defined recursive data

* Become comfortable with core functional programming
idioms
* First-class functions
* Lists
e Pattern matching

Module 2: Growing The Lambda Calculus

* We will implement a tiny programming
language one feature at a time

Calculator-lang

Let-lang (binding, substitution)
Lambda calculus (functions)
Programming in the lambda calculus

Implementing the lambda calculus Drawing Hands
efﬁCiently M. C. Escher 1968

6. Recursion in the lambda calculus

Al

Module 2: Growing The Lambda Calculus

9/11/24 Abstract Syntax

9/16/24 Let language

9/18/24 Lambda Calculus

9/23/24 Programming in Lambda Calculus
9/25/24 Environments and Closures
9/30/24 Recursion

Schedule is

subject to change!

Module 2: Why grow the lambda calculus?

* See how a real expressive programming language is
made from start to finish

* Learn how to understand formal mathematical
descriptions of programs and translate those into
implementation

* Learn to appreciate the value of expressive
language features by programming in a very
restricted language without any

Module 3: Types

* Types are many things
* A form of checked specification for programs
* A way of constraining the expressivity of programs

import java.util.Scanner;

* Example: Java

public class HelloWorld {
public static void main(String[] args) {

// Creates a reader instance which takes
// input from standard input - keyboard
Scanner reader = new Scanner(System.in);
tem.out.print("Enter a number: ");
Type Sys ut.print(umb)

annotation // nextInt() reads the next integer from the keyboard
int number = reader.nextInt();

// println() prints the following line to the output
System.out.println("You entered: " + number);

Module 3: Types

Types can’t prevent all bugs: this is a valid Java program:

public class Example {
public static void main(String[] args) { Object obj = null;
obj.hashCode();
}
}

Tony Hoare

Null References: Recommended viewing:

The Billion Dollar https://www.infog.com/presentations/Null-
Mistake References-The-Billion-Dollar-Mistake-Tony-
Hoare/

Tony Hoare

I\/I Od U | e 3 - Types https://www.whitehouse.gov/

oncd/briefing-
room/2024/02/26/press-
release-technical-report/

FEBRUARY 26, 2024

Press Release: Future Software Should
Be Memory Safe

» ONCD » BRIEFING ROOM » PRESS RELEASE

Leaders in Industry Support White House Call to Address Root Cause of
Many of the Worst Cyber Attacks

Read the full report here

WASHINGTON - Today, the White House Office of the National Cyber
Director (ONCD) released a report calling on the technical community to
proactively reduce the attack surface in cyberspace. ONCD makes the case
that technology manufacturers can prevent entire classes of vulnerabilities
from entering the digital ecosystem by adopting memory safe programming
languages. ONCD is also encouraging the research community to address the
problem of software measurability to enable the development of better

diagnostics that measure cybersecurity quality.

https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/

Module 3: Why study types?

* You will encounter type systems in your day-to-day
programming

* Type systems are getting increasingly sophisticated
(memory safety, Rust)

* Gaining a good appreciation of how type systems
are designed and implemented prepares you for a
more well-typed future

Module 3: Types

10/2/24

10/7/24

10/9/24

10/14/24

10/16/24

10/21/24

10/23/24

10/28/24

Simple Types

Simply-typed Lambda Calculus

Extending Simple Types

NO CLASS (Indigenous People's)

Mutable State and References

Polymorphism

Modules

Recursive Types

Module 4: Control

* Programs don’t run in order: control flow can jump
around
* |f expressions
* Function calls
* Exceptions
e Async/await
* Callbacks

* How do we add these features to our languages?
How are they implemented?

Module 4: Control

10/30/24 Tail Form
11/4/24 Exceptions

11/6/24 Continuation-passing Style

Module 4: Why study control?

e Learn how to implement your own control-flow
primitives
* Lets you add them to languages that don’t have them!

* More deeply understand how compilers are
implemented

* Understand the cost of using various control-flow
operations

Module 5: Topics

* We explore some modern, advanced, or emerging
topics in programming languages

11/13/24 Macros
11/18/24 Laziness
11/20/24 Effects

11/25/24 Probabilistic Programming

Graded content

Assignments (50% Of Total): Roughly weekly. Posted on this webpage, turned in on
Gradescope. You may discuss the problems with other students, but you must submit your own
solutions.

Programming Projects (10%): There will be 1 larger programming assignment worth 10%. This
will span 2 to 3 weeks.

Module quizzes (40% of total): One after each module. These will cover content from the
module (nhon-cumulative), will be take-home and given 24 hours.

Dates for these

quizzes posted on the
course webpage soon.

Grading policies

Letter grades will be assigned according to a standard grading threshold based on percentage of

total points:
Score range Letter grade
>93 A
>90 A-
=87 B+
>83 B
>80 B-
=77 C+
>73 C
=70 C-
>67 D+
=63 D
>60 D-

Course resources

e Course notes posted on the main course webpage
e Supplementary textbooks:

ESSENTIALS OF

Types and
PROGRAMMING muosomon

Programming LANGUAGES
Languages

Benjamin C. Pierce

Daniel P. Friedman and Mitchell Wand

Essentials of
Programming Languages
Friedman and Wand

Types and Programming
Languages
Pierce

Input/Output

* Discussion forum on Piazza (link to join on Canvas)

* Major announcements made on Piazza; you are
responsible for ensuring that you receive these

* Assignments turned in on Gradescope
* There will be an autograder

e The autograter score is not the final score (some test
cases will be hidden)

* You must test your code!

Support

* Office hours
* Each TA offers 2 hours of weekly office hours

* Piazza
* Ask questions on Piazza

* Try to direct as many course questions there as possible
(preferred over email)

* Email the instructor if you have an issue, | want to
help ©

Questions?

Introduction to Racket

	Slide 1: CS4400/5400 Programming Languages
	Slide 2: What is a “programming language”?
	Slide 3: What is a “programming language”?
	Slide 4: What is a “programming language”?
	Slide 5: Languages have Two Parts
	Slide 6: Programming Languages have Two Parts
	Slide 7: Programming Languages have Two Parts
	Slide 8: Programming Languages have Two Parts
	Slide 9: This course is all about precisely defining programming languages
	Slide 10: Questions you may have?
	Slide 11: There are many programming languages and there are more all the time
	Slide 12: There are many programming languages and there are more all the time
	Slide 13: There are many programming languages and there are more all the time
	Slide 14: There are many programming languages and there are more all the time
	Slide 15: Duality of Programming Languages: Programming languages are mathematical constructs
	Slide 16: Duality of Programming Languages: Programming languages are social constructs
	Slide 17: Why study programming languages?
	Slide 18: Course structure and logistics
	Slide 19: Syllabus and Course Website
	Slide 20: Course staff
	Slide 21: You are at one of the best schools for PL in the world
	Slide 22: Module 1: Introduction
	Slide 23: Module 2: Growing The Lambda Calculus
	Slide 24: Module 2: Growing The Lambda Calculus
	Slide 25: Module 2: Why grow the lambda calculus?
	Slide 26: Module 3: Types
	Slide 27: Module 3: Types
	Slide 28: Module 3: Types
	Slide 29: Module 3: Why study types?
	Slide 30: Module 3: Types
	Slide 31: Module 4: Control
	Slide 32: Module 4: Control
	Slide 33: Module 4: Why study control?
	Slide 34: Module 5: Topics
	Slide 35: Graded content
	Slide 36: Grading policies
	Slide 37: Course resources
	Slide 38: Input/Output
	Slide 39: Support
	Slide 40
	Slide 41: Introduction to Racket

