
CS4400/5400
Programming Languages

Fall 2024

Instructor: Steven Holtzen

s.holtzen@northeastern.edu

mailto:s.holtzen@northeastern.edu

What is a “programming language”?

“A programming language is a
system of notation for writing
computer programs.”

https://en.wikipedia.org/wiki/Programming_language

What is a “programming language”?

“Computer programming language,
any of various languages for
expressing a set of detailed
instructions for a digital computer.”

https://www.britannica.com/technology/computer-
programming-language

What is a “programming language”?

A programming language is a means for
unambiguously specifying a sequence of
actions to be taken by a computer.

Programs have
exactly a single

meaning

Programs do
something

Programs only have
meaning in the context of

what is executing them

Languages have Two Parts

Syntax
(Form)

What does it look like?

Semantics
(Function)

What does it do?

“Your debt is canceled”

Programming Languages have Two Parts

Syntax
Python

What does it look like?

Semantics

What does it do?

x=5
print(x)

• Create a local variable
called “x” and assign it
equal to 5

• Print the value of “x”
to the console

Is this
really
what the
program

does? What
level of

detail do we
want?

Programming Languages have Two Parts

Syntax
JavaScript

What does it look like?

Semantics

What does it do?

let x = 5;
console.log(x)

• Create a local variable
called “x” and assign it
equal to 5

• Print the value of “x”
to the console

Programming Languages have Two Parts

Syntax
Racket

What does it look like?

Semantics

What does it do?

(define x 5)
(display x)

• Create a local variable
called “x” and assign it
equal to 5

• Print the value of “x”
to the console

This course is all about precisely
defining programming languages

Syntax

Formal descriptions as
grammars

Semantics

Programs that run
programs

Interpreters!

• Grow big languages out of small ones
• Implement new languages

Questions you may have?

Why are there so many programming
languages?

Which language should I learn? Should I use?

Are some languages worse than others?
Better? How can I compare them?

What distinguishes one language from
another?

Why are new languages being made today?

How are new languages made?

There are many programming languages
and there are more all the time

There are many programming languages
and there are more all the time

There are many programming languages
and there are more all the time

There are many programming languages
and there are more all the time

Duality of Programming Languages:
Programming languages are mathematical constructs

Duality of Programming Languages:
Programming languages are social constructs

Why study programming languages?

• Be a more effective programmer
• Learn how to choose languages for your problem
• Learn how to design new languages if needed

• Become equipped to learn new languages quickly

• Be prepared for an evolving world

• Enjoy an aesthetic journey through this elegant
field (subjective)

Course structure and logistics

Syllabus and Course Website

• Course website is here:

• Link on Canvas and my website

• Has all the course information
• Assignments

• Deadlines

• Syllabus

• Course notes (+ these slides)

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-fall24/

You are expected
to read and be

aware of all
content in the

course syllabus!

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-fall24/

Course staff

• Instructor: Steven Holtzen
• Assistant professor at Northeastern

since 2021

• Studies probabilistic programming languages

• Teaching assistants:
• Vadym Matviichuk matviichuk.v@northeastern.edu

• Brianna Marshall marshall.br@northeastern.edu

• Abdelrahman Madkour madkour.a@northeastern.edu

mailto:matviichuk.v@northeastern.edu
mailto:marshall.br@northeastern.edu
mailto:madkour.a@northeastern.edu

You are at one of the best schools
for PL in the world

https://prl.khoury.northeastern.edu/

Many of the tools
we use in this class
were developed
here!

https://prl.khoury.northeastern.edu/

Module 1: Introduction

• Become familiar with inductively defined data and
functional programming in Racket

• See the design recipe for programming with inductively
defined recursive data

• Become comfortable with core functional programming
idioms
• First-class functions
• Lists
• Pattern matching

Module 2: Growing The Lambda Calculus

• We will implement a tiny programming
language one feature at a time

1. Calculator-lang

2. Let-lang (binding, substitution)

3. Lambda calculus (functions)

4. Programming in the lambda calculus

5. Implementing the lambda calculus
efficiently

6. Recursion in the lambda calculus

Drawing Hands
M. C. Escher 1968

Module 2: Growing The Lambda Calculus

Schedule is
subject to change!

Module 2: Why grow the lambda calculus?

• See how a real expressive programming language is
made from start to finish

• Learn how to understand formal mathematical
descriptions of programs and translate those into
implementation

• Learn to appreciate the value of expressive
language features by programming in a very
restricted language without any

Module 3: Types

• Types are many things
• A form of checked specification for programs

• A way of constraining the expressivity of programs

• Example: Java

Type
annotation

Module 3: Types

Types can’t prevent all bugs: this is a valid Java program:

public class Example {
 public static void main(String[] args) { Object obj = null;
 obj.hashCode();
 }
}

Tony Hoare

Recommended viewing:
https://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-
Hoare/

Module 3: Types https://www.whitehouse.gov/
oncd/briefing-
room/2024/02/26/press-
release-technical-report/

https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/

Module 3: Why study types?

• You will encounter type systems in your day-to-day
programming

• Type systems are getting increasingly sophisticated
(memory safety, Rust)

• Gaining a good appreciation of how type systems
are designed and implemented prepares you for a
more well-typed future

Module 3: Types

Module 4: Control

• Programs don’t run in order: control flow can jump
around
• If expressions

• Function calls

• Exceptions

• Async/await

• Callbacks

• How do we add these features to our languages?
How are they implemented?

Module 4: Control

Module 4: Why study control?

• Learn how to implement your own control-flow
primitives
• Lets you add them to languages that don’t have them!

• More deeply understand how compilers are
implemented

• Understand the cost of using various control-flow
operations

Module 5: Topics

• We explore some modern, advanced, or emerging
topics in programming languages

Graded content

Dates for these
quizzes posted on the
course webpage soon.

Grading policies

Course resources

• Course notes posted on the main course webpage

• Supplementary textbooks:

Types and Programming
Languages
Pierce

Essentials of
Programming Languages
Friedman and Wand

Input/Output

• Discussion forum on Piazza (link to join on Canvas)
• Major announcements made on Piazza; you are

responsible for ensuring that you receive these

• Assignments turned in on Gradescope
• There will be an autograder

• The autograter score is not the final score (some test
cases will be hidden)

• You must test your code!

Support

• Office hours
• Each TA offers 2 hours of weekly office hours

• Piazza
• Ask questions on Piazza
• Try to direct as many course questions there as possible

(preferred over email)

• Email the instructor if you have an issue, I want to
help ☺

Questions?

Introduction to Racket

	Slide 1: CS4400/5400 Programming Languages
	Slide 2: What is a “programming language”?
	Slide 3: What is a “programming language”?
	Slide 4: What is a “programming language”?
	Slide 5: Languages have Two Parts
	Slide 6: Programming Languages have Two Parts
	Slide 7: Programming Languages have Two Parts
	Slide 8: Programming Languages have Two Parts
	Slide 9: This course is all about precisely defining programming languages
	Slide 10: Questions you may have?
	Slide 11: There are many programming languages and there are more all the time
	Slide 12: There are many programming languages and there are more all the time
	Slide 13: There are many programming languages and there are more all the time
	Slide 14: There are many programming languages and there are more all the time
	Slide 15: Duality of Programming Languages: Programming languages are mathematical constructs
	Slide 16: Duality of Programming Languages: Programming languages are social constructs
	Slide 17: Why study programming languages?
	Slide 18: Course structure and logistics
	Slide 19: Syllabus and Course Website
	Slide 20: Course staff
	Slide 21: You are at one of the best schools for PL in the world
	Slide 22: Module 1: Introduction
	Slide 23: Module 2: Growing The Lambda Calculus
	Slide 24: Module 2: Growing The Lambda Calculus
	Slide 25: Module 2: Why grow the lambda calculus?
	Slide 26: Module 3: Types
	Slide 27: Module 3: Types
	Slide 28: Module 3: Types
	Slide 29: Module 3: Why study types?
	Slide 30: Module 3: Types
	Slide 31: Module 4: Control
	Slide 32: Module 4: Control
	Slide 33: Module 4: Why study control?
	Slide 34: Module 5: Topics
	Slide 35: Graded content
	Slide 36: Grading policies
	Slide 37: Course resources
	Slide 38: Input/Output
	Slide 39: Support
	Slide 40
	Slide 41: Introduction to Racket

