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1 Typed If-then-Else

• Let’s continue the process of adding language features and trying to design type checkers that elimi-
nate runtime errors in the Racket host semantics.

• The next feature we’ll add is if-then-else. Here is its syntax and semantics:

;;; type expr =
;;; | enum of number
;;; | ebool of boolean
;;; | eite of expr * expr * expr
(struct enum (n) #:transparent)
(struct ebool (b) #:transparent)
(struct eite (grd thn els) #:transparent)

;;; type value =
;;; | vbool of bool
;;; | vnum of num
(struct vbool (b) #:transparent)
(struct vnum (n) #:transparent)

;;; value->bool : value -> bool
(define (value->bool v)

(match v
[(vbool b) b]
[_ (error "not a number")]))

;;; interp : expr -> value
(define (interp e)

(match e
[(enum n) (vnum n)]
[(ebool b) (vbool b)]
[(eite g thn els)
(if (value->bool (interp g))

(interp thn)
(interp els))]))
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2 Designing a type system for the if-then-else language

• We defined our notion of “going wrong” as causing the host semantics of Racket to raise a runtime
error

• So, what programs cause this to happen? Here are some:

(eite (enum 10) (ebool #t) (ebool #f))
(eite (eite (ebool #t) (enum 10) (enum 30)) (ebool #t) (ebool #f))

• Clearly, the requirement is: the guard of an if must evaluate to a Boolean.

• So, let’s try to design a typesystem that enforces this. Our possible types are tbool and tnum:

(struct tnum () #:transparent)
(struct tbool () #:transparent)

• Just like last lecture, we start by defining a function type-of that computes the type of an if-then-else
term. Let’s try:

;;; type-of : expr -> itetype
(define (type-of e)

(match e
[(enum n) (tnum)]
[(ebool b) (tbool)]
[(eite g thn els)
(if (and (equal? (type-of g) (tbool))

(equal? (type-of thn) (type-of els)))
???
(raise-type-error))]))

• The base cases are easy, but we hit a wrinkle: what do we replace ??? with? It’s not obvious what to
do here! There are two choices that each have to make different compromises:

1. Evaluate the guard to see which branch is taken. This replaces ??? with:

(match (interp g)
[(vbool #t) (type-of thn)]
[(vbool #f) (type-of els)]
[_ (raise-type-error)])

This prioritizes expressivity at the expense of performance: computing the type of a term re-
quires evaluating code, which might be very expensive, especially once we start to add more
language features. In general, we avoid using interp in our type-checkers for this reason.

2. Require that both branches of the if return the same type, and return that type. This replaces ??? with:

(if (and (equal? (type-of g) (tbool))
(equal? (type-of thn) (type-of els)))

(type-of thn)
(raise-type-error))

This prioritizes performance at the expense of expressivity. With this choice of type-checking,
some programs that do not cause runtime errors will not be well-typed, such as the following
program:

(ite (ebool #t) (enum 10) (ebool 30))
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3 Typing rules for if-then-else

• We will go with Option #2: we will require that the two branches of if-then-else evaluate to the same
type. In practice all languages make this design choice so that type-checking is efficient.

• Here are the inference rules for the type system for this language:

(enum n) : num (T-NUM) (ebool b) : bool (T-BOOL)

g : bool thn : t els : t

(ite g thn els) : t
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4 Towards a Typed Lambda Calculus

• Continuing along, let’s now explore how to add types to the lambda calculus

• Let’s start with the lambda calculus with numbers and addition. Here is the syntax and semantics,
which should be quite familiar:

#lang racket
;;; type lexpr =
;;; | eident of string
;;; | elam of string * typ * lexpr
;;; | eapp of expr * lexpr
;;; | enum of expr * lexpr
;;; | eadd of expr * lexpr
(struct eident (s) #:transparent)
(struct elam (id body) #:transparent)
(struct eapp (e1 e2) #:transparent)
(struct enum (n) #:transparent)
(struct eadd (e1 e2) #:transparent)

;;; subst : expr -> string -> expr -> expr
;;; performs the substitution e1[x |-> e2] with lexical scope
(define (subst e1 id e2)

(match e1
[(eident x)
(if (equal? x id) e2 (eident x))]
[(elam x body)
(if (equal? x id)

(elam x body) ; shadowing case; do nothing
(elam x (subst body id e2)) ; non-shadowing case
)]

[(eapp f arg)
(eapp (subst f id e2) (subst arg id e2))]
[(eadd l r)
(eadd (subst l id e2) (subst r id e2))]
[(enum n) (enum n)]))

;;; interp : lexpr -> value
;;; runs a lambda term and produces a value
(define (interp e)

(match e
[(eident x) (error "unbound ident")]
[(elam id x) (elam id x)]
[(enum n) (enum n)]
[(eadd e1 e2)
(match (list (interp e1) (interp e2))

[(list (enum n1) (enum n2)) (enum (+ n1 n2))])]
[(eapp e1 e2)
(match (interp e1)

[(elam id body)
(let* [(arg-v (interp e2))

(subst-body (subst body id arg-v))]
(interp subst-body))])]))
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5 Attempt 1 at Designing a Type System for the Lambda Calculus

• As usual we ask: how can things go wrong (i.e., cause a runtime error in the Racket host semantics)?
Well, the most straightforward way is calling something that is not a function. There are a few ways
this can happen, such as:

(interp (eapp (enum 10) (enum 30)))
(interp (eapp (eapp (elam "x" (enum 10)) 20) 30))
(interp (eapp (elam "x" (x 5)) (enum 10)))

• Let’s design a type system to prevent non-functions from being called.

• First, what are our types? Well, we know that types are collections of values, and clearly there are two
kinds of values: numbers and functions. So, we might try the following type of types:

;;; type typ =
;;; tnum
;;; tfun
(struct tnum ())
(struct tfun ())

• We can try to design a typechecker that attempts to typecheck programs using these rules:

;;; type-of : expr -> typ
;;; computes the type of a term, or raises an type exception if no valid type
;;; exists for that term
(define (type-of e)

(match e
[(enum _) (tnum)]
[(elam id body) (tfun)]
[(eapp e1 e2)
???]
[(eident id) !?!?]))

• What do we replace ??? with (let’s forget about !?!? for now)? Well, first we should check if the
type of e1 is a function. This is easy enough:

;;; type-of : expr -> typ
;;; computes the type of a term, or raises an type exception if no valid type
;;; exists for that term
(define (type-of e)

(match e
[(enum _) (tnum)]
[(elam id body) (tfun)]
[(eapp e1 e2)
(if (equal? (type-of e1) (tfun))

???
(raise-type-error))]

[(eident id) !?!?]))

• Now what do we replace ??? with? It’s not clear what the type of evaluating e1 is! Remember, we
want to do this without interpreting e1. Even worse, we need to make sure we’re calling e1 with the
right type of argument. If we don’t do that, e1 might misuse its argument in some way.
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6 Attempt 2: Simple Types

• The previous discussion showed us that we need to track the type of a function’s argument and return
value in our typesystem. This shouldn’t be surprising: many languages that use types, like C, Java,
etc. all have this requirement.

• We address this by making our types more fine-grained. For functions, we will keep track of their
return and argument type:

;;; type typ =
;;; | tnum
;;; | tfun of typ * typ
(struct tnum () #:transparent)
(struct tfun (targ tret) #:transparent) ; targ is argument type, tret is return type

These are called simple types, which means they are either (1) a non-recursive base type, like num-
bers; or (2) a function type.

• Now we can try to design a type checker that associates terms with simple types:

(define (type-of e)
(match e

[(enum n) (tnum)]
[(elam id body) ???]
...))

• We immediately hit a problem: what is the type of a lambda? It’s not obvious! For example, what is the
type of this program:

(elam "x" (eident "x"))

• To resolve this issue, we will make a simplifying assumption: we will annotate the arguments to lambdas
with their types. We call these type annotations. Again, this is familiar: many languages that have
typesystems do this, and this is why. So, we will adjust our syntax of lambda terms to include a type
for the argument:

;;; type typ =
;;; | tnum
;;; | tfun of typ * typ
(struct tnum () #:transparent)
(struct tfun (t1 t2) #:transparent)

;;; type lexpr =
;;; | eident of string
;;; | elam of string * typ * lexpr
;;; | eapp of expr * lexpr
;;; | enum of expr * lexpr
(struct eident (s) #:transparent)
(struct elam (id typ body) #:transparent)
(struct eapp (e1 e2) #:transparent)
(struct enum (n) #:transparent)

• For surface syntax we often abbreviate (elam x t e) as λx : t.e, for instance, we may write the
following:

(λx : num. x) 10
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7 Type Environments

• Imagine we want to type check the following application:

(λx : num. x) 10

• What do we need to do? We need to:

– Check that the function (λx : num. x) takes a number as an argument. This is easy to see: we can
just check its type annotation.

– Determine what type (λx : num. x) returns when we call it with a number, and return that type.
This is a bit trickier. We would like to determine the type of a function by computing the type of
its body. But, the challenge is that the function body here consists only of an identifier x: what is
its type?

• To solve this problem, during type checking, we will need to keep track of the types of identifiers. This
is done using a type environment, which is a hash-table that will map identifiers to their types.

• Note that again we will need to be careful of scope: an identifier might be shadowed by another
identifier of a different type, and our type environment will need to properly account for this.
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8 A Simply-Typed Lambda Calculus Implementation

• Finally we are ready for the simply-typed lambda calculus (STLC) in all its glory:

;;; type typ =
;;; | tnum
;;; | tfun of typ * typ
(struct tnum () #:transparent)
(struct tfun (t1 t2) #:transparent)

;;; type lexpr =
;;; | eident of string
;;; | elam of string * typ * lexpr
;;; | eapp of expr * lexpr
;;; | enum of expr * lexpr
;;; | eadd of expr * lexpr
(struct eident (s) #:transparent)
(struct elam (id typ body) #:transparent)
(struct eapp (e1 e2) #:transparent)
(struct enum (n) #:transparent)

;;; type-of : typeenv -> expr -> typ
;;; computes the type of a term, or raises an type exception if no valid type
;;; exists for that term
(define (type-of tenv e)

(match e
[(enum n) (tnum)]
[(eident id)
; look up id in the type environment; if it's not there, raise a type error
(hash-ref tenv id (lambda () (raise-type-error)))]
[(elam id typ body)
; 1. let T be the type of body with the type environment extended with [id |-> typ]
; return a function typ -> T
(let* ([extended-env (hash-set tenv id typ)]

[T (type-of extended-env body)])
(tfun typ T))]

[(eapp e1 e2)
; let t1 -> t2 be the type of e1; if this is not a function type, then raise an error
; check that e2 has type t1
; return type t2
(match (type-of tenv e1)

[(tfun t1 t2)
(if (equal? (type-of tenv e2) t1)

t2
(raise-type-error))]

[_ (raise-type-error)])]))
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9 Inference Rules for STLC

• We will likely not have time to discuss these in class today, but I will include the inference rules here
in case we have time:

Γ ⊢ (enum n) : num (T-NUM)
x ∈ Γ Γ(x) = t

Γ ⊢ x : t
(T-IDENT)

Γ ∪ {x 7→ t1} ⊢ e : t2

Γ ⊢ (λx : t1.e) : t1 → t2
(T-LAM)

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ (e1 e2) : t2
(T-APP)
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10 Consequences of Simple Types

• Let’s evaluate the quality of STLC on the type design axes:

– Soundness: Our type system is indeed sound. No well-typed STLC programs can trigger a
runtime error in the Racket host semantics.

– Efficiency. It is indeed efficient to type-check programs.

– Usability. It seems reasonable that programmers could annotate their lambda terms with types.
It seems so straightforward that it could even feasibly be automated; we’ll see later that this is
indeed possible.

– What about expressivity? Is it the case that there is a lambda term that is not well-typed, but
does not cause a runtime error in our interpreter?

• It turns out that we lose expressivity: there are terms that run without raising a runtime error that are
not well-typed according to the rules of STLC. Here is one such term:

Ω =
(
(λx.(x x)) (λx.(x x))

)
• What is the type of x in each of these expressions? Try for yourself and see what happens; we will

discuss this more next lecture.
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