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1 What is control flow?

• Control flow determines which part of the program executes next.

• So far, all of the programming languages we have seen have had simple control-flow structure. We
have seen two syntactic constructs that give the programmer control over the control flow of a pro-
gram:

– Function calls.

– If expressions.

• Practical programming languages often have more interesting ways of modifying control flow, for
example exceptions. Consider the following Java code:

public class Main {
public static void main(String[ ] args) {

try {
int[] myNumbers = {1, 2, 3};
System.out.println(myNumbers[10]);

} catch (Exception e) {
System.out.println("Something went wrong.");

}
}

}

• This code does not simply execute one expression after the other in sequence like all of our interpreters
so far; it relies on the ability to jump from one place of execution to another

• This module is about implementing languages with richer control flow constructs than the ones we
have seen so far. To do this, we will rely heavily on an idea called a continuation, which we will see
today.
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2 The Control Context

• Thus far, we have seen how we can write programs that manipulate names and mutable state by
enriching our interpreter with heaps and environments.

• Now, we will enrich our interpreters with a notion of control context in order to implement interesting
control-flow structure

• A control context tracks which operations remain to be performed in order to finish a computation.
If you’re familiar with the notion, a control context is analogous to a call stack.

• As an example, consider the following definition of a factorial function (written in OCaml syntax):

let rec fact n =
if n = 0 then 1 else n * (fact (n - 1))

• Let’s step through evaluating the recursive call (fact 4):

fact 4
--> 4 * (fact 3)

^^^ control context
--> 4 * 3 * (fact 2)

^^^^^^^ control context
--> 4 * 3 * 2 * (fact 1)

^^^^^^^^^^^ control context
--> 4 * 3 * 2 * 1 * (fact 0)

^^^^^^^^^^^^^^^ control context
--> 4 * 3 * 2 * 1 * 1
--> 24

• Each time fact n is called, that comes with a promise that the eventual value returned will be mul-
tiplied by n

• This “promise to do something with the return value of a function call” is stored in the control context,
which is a control-flow feature of a processor that keeps track of the context in which functions are
called. The control context of each call to fact is annotated above.

• Observe how above the control context grows with n: This can result in practical performance prob-
lems: if you’ve ever hit a “stack overflow” error in your code, it is typically because of accidental
unbounded control context.
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3 Tail Form

• There is an alternative way to write fact that does not grow the control context by using an accumu-
lator acc:

let rec fact_acc (n:int) (acc : int) =
if n = 0 then acc else (fact_acc (n - 1) (n * acc))

let fact_iter n = fact_iter_acc n 1

• Let’s examine the control context when we evaluate this function:

fact_acc 4 1
--> fact_acc 3 2
--> fact_acc 2 12
--> fact_acc 1 24
--> fact_acc 0 24
--> 24

• Observe how instead of storing all the necessary data to finish the factorial computation in the control
context, it is instead stored in the accumulator

• A function that requires no additional control context in order to execute exhibits iterative control
behavior. A function that does require control context is said to exhibit recursive control behavior.

• How can you tell if a function has iterative or recursive control? If a function invokes itself in operand
position (i.e., a recursive call is made as an argument to some other function), then it requires recur-
sive control. Observe how in fact, the recursive call is invoked as an argument to the multiplication
*.

• A tail call is a function call performed as the final act of a function.

• Observe that fact_acc above only ever calls itself as a tail call. We say fact_acc is in tail form.

• Tail calls enable a host of powerful compiler optimizations and are often essential for writing high-
performance functional programs. Consequently, OCaml supports a tailcall annotation that raises a
warning if a function is not invoked as a tail call:

let rec fact_iter_acc n acc =
if n = 0 then acc else ((fact_iter_acc [@tailcall]) (n - 1) (n * acc))
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4 Continuations

• In the fact example above, we are able to capture all the context necessary to finish the computa-
tion using an accumulator. This is not always possible; sometimes you need to keep track of more
complicated behavior in the control context. This brings us to the notion of a continuation.

• Instead of using an accumulator, let’s instead use a function to keep track of the remaining steps of
computation. We will call this function a continuation (it “continues the computation”)

• Let’s switch over to Racket syntax to see this:

(define (fact_cont_h n k)
(if (equal? n 0)

(k 1) ; call continuation with 1
(fact_cont_h
(- n 1)
(λ (r)

; call continuation with n * r
(k (* n r))))))

(define (fact n) (fact_cont_h n (λ (r) r)))

• The function fact_cont_h is initially called with a continuation (λ (r) r). We typically denote
the argument to a continuation as r, short for “returned value”. We initialize the continuation to the
identity function, indicating that we have no further work to. Think of this as the “empty call stack”.

• A function in tail form that takes a continuation as an argument is said to be in continuation-passing
form. Function in continuation-passing form do not typically end by returning a value; instead, they
end by calling the continuation.

• The best way to understand this code is to step through it and see how it avoids using control context
(read this carefully! the scoping rules for the continuation k are very important):

fact_cont_h 2 (λ (r) r) ; label (λ (r) r) as id
--> fact_cont_h 1 (λ (r) (id (* 2 r))) ; label (λ (r) (id (* 2 r))) as k1
--> fact_cont_h 0 (λ (r) (k1 (* 1 r)))
--> (λ (r) (k1 (* 1 r))) 1
--> (λ (r) (id (* 2 r))) 1
--> (id (* 2 1))
--> 2

• Notice how the continuation grows with each recursive call instead of the control context: it is keeping
track of all the remaining computation to do once the recursive call finally hits its base case.

• Note the order in which the multiplications are performed: first the multiplication 1 * 1 is per-
formed; then 2 * 1.
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5 The Tail-form Recipe

• Given a recursive function that is not in tail form, how can we transform it into one that is in tail form
by using a continuation?

• Let’s start with functions with a single argument that call themselves but no other functions.

• Let’s look at the recursively-implemented factorial function again:

(define (fact-rec n)
(if (equal? n 0) 1

(* n (fact-rec (- n 1)))))

• Step 1: change the signature of the function to add a continuation:

(define (fact-iter n k)
(if (equal? n 0) 1

(* n (fact-iter (- n 1)))))

• Step 2: Find all points where the function returns a value and call the continuation at those points:

(define (fact-iter n k)
(if (equal? n 0) (k n)

(k (* n (fact-iter (- n 1))))))

• Step 3: Replace all instances where a function is called in operand form with a version of the function
where it is called in tail form:

(define (fact-iter n k)
(if (equal? n 0) (k n)

(fact-iter (- n 1) ???))))

• Step 4: Move the operations that were previously dependent on the result of the recursive call inside
the continuation, and replace the recursive call with the continuation’s argument:

(define (fact-iter n k)
(if (equal? n 0) (k n)

(fact-iter (- n 1) (λ (r) (k (* n r)))))))

• If you don’t want to remember this recipe, that’s OK. If your function is in tail form, you are essentially
required to write it this way.
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6 Tail Form with Multiple Self-Calls

• Many recursive functions involve calling themselves multiple times in the same operand position.

• For example, the Fibonacci function looks like this:

(define (fib n)
(match n

[0 0]
[1 1]
[n (+ (fib (- n 1))

(fib (- n 2)))]))

• How do we write this function in tail-form? We can follow a similar recipe, except this time, the
continuation will be required to invoke fib.

• 1. Add a continuation:

(define (fib n k)
(match n

[0 0]
[1 1]
[n (+ (fib (- n 1))

(fib (- n 2)))]))

• 2. Call continuation on return points:

(define (fib n k)
(match n

[0 (k 0)]
[1 (k 1)]
[n (k (+ (fib (- n 1))

(fib (- n 2))))]))

• 3. Make operand calls tail-form. Here we have a choice about which operand call to make tail-form!
We pick one of them arbitrarily:

(define (fib n k)
(match n

[0 (k 0)]
[1 (k 1)]
[n (fib (- n 1) ???))])

• 4. Fill in continuation:

(define (fib n k)
(match n

[0 (k 0)]
[1 (k 1)]
[n (fib (- n 1) (λ (r)

(k (+ r (fib (- n 2))))))]))

• Notice: we aren’t done yet, since the above function is not in tail-form. The continuation itself has a
call to fib that is not a tail-call. So, we simply repeat steps 3 and 4. Making the operand call tail-form,
and filling in its continuation, yields a nested continuation:
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(define (fib n k)
(match n

[0 (k 0)]
[1 (k 1)]
[n (fib (n - 1) (λ (r1)

(fib (- n 2) (λ (r2) (k (+ r1 r2))))))]))
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7 Continuation-passing Interpreters

• Explicit representation of the continuation is a powerful tool for implementing control-flow operators
in interpreters

• First, let’s see how to implement an interpreter in continuation-passing form: this way, we have the
control context explicitly available. Then, we will make use of this explicit control context in order to
do interesting control flow operations.

• Recall the usual recursive calculator interpreter:

(struct enum (n) #:transparent)
(struct eadd (e1 e2) #:transparent)

(define (interp-recursive e)
(match e

[(enum n) n]
[(eadd e1 e2) (+ (interp-recursive e1) (interp-recursive e2))]))

• Observe that this interpreter is not in tail-form. So, let’s write this interpreter in tail-form by introduc-
ing a continuation and applying the tail-form recipe:

(define (interp-iter-h e k)
(match e

[(enum n) (k n)]
[(eadd e1 e2)
(interp-iter-h e1

(λ (r1)
(interp-iter-h e2 (λ (r2)

(k (+ r1 r2))))))]))

• This interpreter is now in continuation-passing form.

8



8 The Power of Continuations: Implementing Return

• Continuations enable implementing interesting control-flow operations in our interpreters.

• Many programming languages have a return operation that immediately ends a function by return-
ing a value.

• We can implement a return construct in our calculator language using continuations. The syntax of
this new feature will be:

(struct enum (n) #:transparent)
(struct eadd (e1 e2) #:transparent)
(struct eret (v) #:transparent)

• As an example of the semantics of returning, the program (eadd (enum 10) (eret 30)) should
evaluate to 30.

• We can implement these semantics by not calling the continuation:

(define (interp-ret-h e k)
(match e

[(enum n) (k n)]
[(eadd e1 e2)
(interp-ret-h e1

(λ (r1)
(interp-ret-h e2 (λ (r2)

(k (+ r1 r2))))))]
[(eret v)
; drop the continuation (i.e., don't call it) and simply return v
v]))
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