
Lecture 19: Monads

Brianna Marshall

CS4400/5400 Fall 2024

1 Introduction

We saw mutable state in lecture 16 and exceptions in lecture 18. Both features are a form of
effect. In both cases, the implementation involved adding a new expression that, as part of being
evaluated, implicitly does something to the machine’s state, like changing memory or redirecting
control flow. This is in addition to, or instead of, the value returned by the expression.

But that isn’t the only way. It’s possible to implement mutable state and exceptions using only
purely functional language features that we’re already familiar with. Doing it this way has a
number of advantages. In particular, we avoid all of the problems described in the section “Some
Consequences of Mutation” in the Lecture 16 Notes. It also leads directly to a powerful abstraction
with broader consequences for the design of programming languages in general: monads.

A clue for how to pull this off lies in the implementation of our interpreters for MutLang and
ExnLang (see the Lecture 16 and Lecture 18 Notes). The interpreters are actually pure functions,
even though they are interpreting impure languages. We can apply similar techniques inside of the
languages themselves.

This is going to be a very practical approach to monads. We will go through a series of progressively
more complicated examples written in Haskell, culminating in the definition of a monad and a
demonstration of what you can do with code written to be generic over any monad.

2 Haskell crash course

Haskell is a typed functional programming language similar to OCaml, but it has some language
features that are especially useful for monads, which we will use later. Let’s briefly go over some
of the basics.

2.1 Functions

A top-level function is declared like this:

foo x y z = x + y * z

The name of the function is foo and its parameters are x, y, and z. The body is the expression x

+ y * z which follows the equals sign.

1

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-fall24/lecture-notes/lecture-16/lecture-16.pdf
https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-fall24/lecture-notes/lecture-18/lecture-18.pdf

Top-level functions usually include a type signature, which is written on its own line before the
definition:

add1 :: Int -> Int

add1 x = x + 1

The double colon :: indicates a type annotation and is read “add1 has type Int -> Int.“

Anonymous functions (lambda expressions) start with a backslash \, which looks like a λ with a
missing leg. This is another way to write the same add1 function:

add1 = \x -> x + 1

2.2 Types

Algebraic data types are declared with the data keyword. Each data type has zero or more con-
structors separated by a vertical bar |; each constructor has zero or more fields with types separated
by spaces. For example, this is a sum type that contains either a pair of integers or a boolean:

data IntPairOrBool = Left Int Int | Right Bool

Types can depend on other types. For example, a generic version of IntPairOrBool could look
like:

data Either a b = Left a | Right b

where a and b are type variables. The type can then be instantiated with type arguments:

leftOrRight :: Either (Int, Int) Bool

leftOrRight = Left (1, 2)

2.3 Pattern matching

Sum types can be pattern matched against using the case expression:

add1OrNot :: IntPairOrBool -> IntPairOrBool

add1OrNot v = case v of

Left x y -> Left (x + 1) (x + 1)

Right b -> Right (not b)

2.4 Comments

Comments start with two dashes -- and go until the end of the line.

-- Increment the given integer by one.

add1 :: Int -> Int

add1 x = x + 1

3 Functions that fail

Let’s start with something familiar: an interpreter for a simple language with booleans, numbers,
if-then-else, and let-bindings. The AST for the language is defined as follows:

2

data Expr

= EVar String

| EBool Bool

| ENum Int

| ELet String Expr Expr

| EIf Expr Expr Expr

| EAdd Expr Expr

data Value = VBool Bool | VNum Int

3.1 Error-returning style

We will implement an environment-based interpreter, so the interp function needs to take an
environment and the expression to interpret and return a value. As usual, we need to pattern
match on the expression. This will look something like:

interp :: Map String Value -> Expr -> Value

interp env expr = case expr of

EVar x -> _

EBool b -> _

ENum n -> _

ELet x e1 e2 -> _

EIf e1 e2 e3 -> _

EAdd e1 e2 -> _

Right away, we run into an issue when trying to implement the EVar case:

EVar x -> Map.lookup x env

The compiler tells us: “Couldn’t match expected type ‘Value’ with actual type ‘Maybe Value’.”

Map.lookup is like Racket’s hash-ref. However, while hash-ref raises an exception when the key
isn’t found, Map.lookup returns a special value instead. The type Maybe a is defined:

data Maybe a = Nothing | Just a

When Map.lookup returns Maybe Value, it means there could be a value, but there might not be.
We need to use pattern matching to find out. While Racket lets us ignore failures, letting them
implicitly bubble up as exceptions, Haskell forces us to think about how to handle each potential
failure case.

We can anticipate that there are several ways for an interpreter of this language to fail:

1. An unknown variable is used.

2. One of the subexpressions of EAdd evaluates to a boolean.

3. The first subexpression of EIf evaluates to a number.

Let’s define a sum type to indicate whether the interpreter succeeded or failed, and another sum
type to indicate which kind of failure happened. The return type of interp also needs to change

3

accordingly. We will call this error-returning style (in contrast to exception style) because the error
is explicitly returned as a value.

data Result e a = Err e | Ok a

data EvalError = UnknownVar | ExpectedNum | ExpectedBool

interp :: Map String Value -> Expr -> Result EvalError Value

The EVar case now involves pattern matching on the return value of Map.lookup and returning the
corresponding constructor for Result:

EVar x -> case Map.lookup x env of

Nothing -> Err UnknownVar

Just v -> Ok v

The EBool and ENum cases are straightforward: they can never fail.

EBool b -> Ok (VBool b)

ENum n -> Ok (VNum n)

Our first recursive case is ELet. We need to recursively call interp on e1, but this could fail. If
that happens, the only thing to do is propagate the error up, since there won’t be a value to use.
This is expressed by the Err e -> Err e case below, and it mimicks the behavior of exceptions.

ELet x e1 e2 -> case interp env e1 of

Err e -> Err e

Ok v1 ->

let env' = Map.insert x v1 env

in interp env' e2

The EIf case follows similarly, but there’s an additional wrinkle that e1 needs to evaluate to a
boolean. If calling interp on e1 succeeds, we case on the returned value, and if it’s not a VBool,
we return an ExpectedBool error.

EIf e1 e2 e3 -> case interp env e1 of

Err e -> Err e

Ok v1 -> case v1 of

VNum _ -> Err ExpectedBool

VBool b -> if b then interp env e2 else interp env e3

Finally, EAdd requires both of its subexpressions to evaluate to numbers. We use another, larger
sequence of cases to handle failures one-by-one.

EAdd e1 e2 -> case interp env e1 of

Err e -> Err e

Ok v1 -> case v1 of

VBool _ -> Err ExpectedNum

VNum n1 -> case interp env e2 of

Err e -> Err e

Ok v2 -> case v2 of

VBool _ -> Err ExpectedNum

VNum n2 -> Ok (VNum (n1 + n2))

4

3.2 Bubbling up errors

Did you notice that Err e -> Err e showed up every time we made a recursive call? As mentioned,
this mimicks the behavior of exceptions, which “bubble up” the call stack until someone handles the
exception. We can factor out this programming pattern into a separate function that automatically
returns Err e if the Result is Err e, but runs a function on the Ok value otherwise.

andThen :: Result e a -> (a -> Result e b) -> Result e b

andThen r f = case r of

Err e -> Err e

Ok x -> f x

It can then be used like:

andThen (foo x) (\y -> Ok (y + 1))

where foo x is a function call that returns a Result, and \y -> Ok (y + 1) is a lambda expression
that is called on a successful value and returns another Result. We can rewrite this to look a bit
more English-like by using another Haskell language feature: infix function calls. Surrounding the
function name in backticks ` means that we can place it between its two arguments instead of
before:

foo x `andThen` \y -> Ok (y + 1)

3.3 Booleans and numbers

Another repeated operation is extracting a boolean or number from a value, and failing if the value
isn’t the right type. In our Racket interpreters, we sometimes defined to-bool and to-num helper
functions that raised an exception if they couldn’t convert the value to the expected type. We can
write something similar in Haskell, but returning an Err instead of raising an exception:

toBool :: Value -> Result EvalError Bool

toBool v = case v of

VNum _ -> Err ExpectedBool

VBool b -> Ok b

toNum :: Value -> Result EvalError Int

toNum v = case v of

VBool _ -> Err ExpectedNum

VNum n -> Ok n

3.4 Refactoring the interpreter

After refactoring our interpreter to use the three helper functions defined above, it now looks like
this:

interp :: Map String Value -> Expr -> Result EvalError Value

interp env expr = case expr of

EVar x -> case Map.lookup x env of

Nothing -> Err UnknownVar

5

Just v -> Ok v

EBool b -> Ok (VBool b)

ENum n -> Ok (VNum n)

ELet x e1 e2 ->

interp env e1 `andThen` \v1 ->

let env' = Map.insert x v1 env

in interp env' e2

EIf e1 e2 e3 ->

interp env e1 `andThen` toBool `andThen` \b ->

if b then interp env e2 else interp env e3

EAdd e1 e2 ->

interp env e1 `andThen` toNum `andThen` \n1 ->

interp env e2 `andThen` toNum `andThen` \n2 ->

Ok (VNum (n1 + n2))

4 Purifying state

In Lecture 14, we implemented a compiler from TinyCalc to MicroASM. We used a function called
fresh to get a new memory address where we could store the result of an expression:

(define counter (box 0))

(define (fresh)

(define cur (unbox counter))

(set-box! counter (+ 1 cur))

cur)

Notice how the implementation uses a mutable box to store the current address. Let’s look at how
this can be done in Haskell without using mutation. The expression and instruction languages we
will be using are defined like this:

data Expr

= ENum Int

| EAdd Expr Expr

type Addr = Int

type Reg = Int

type Value = Int

data Inst

= ISet Reg Value

| IStore Reg Addr

| ILoad Reg Addr

| IAdd

| IHalt

(type declares a type alias; Addr, Reg, and Value are just other names for the Int type.)

6

https://gist.github.com/SHoltzen/fddc5b30b0e644203a90f9d24c1ff8cd

4.1 State-passing style

Let’s break down everything that fresh is doing:

1. Get the current value of counter.

2. Set the next value of counter.

3. Return the fresh address.

Without a mutable variable that we can perform side effects on, our only choice to describe these
actions is through the input and output of the function. If we can’t get the current value of a
mutable variable, let’s ask for it instead by adding a function parameter. Similarly, if we can’t set
the value of a mutable variable, let’s tell the caller what we would have done by returning an extra
value. The first component of the pair is the new value of the variable and the second component
of the pair is the requested fresh address.

fresh :: Addr -> (Addr, Addr)

fresh counter = (counter + 1, counter)

This is called state-passing style. In our compiler, we need to carefully thread through the latest
value of the counter, which changes after every recursive call or call to fresh:

compile :: Expr -> Addr -> (Addr, ([Inst], Addr))

compile expr counter = case expr of

ENum n ->

let (counter', addr) = fresh counter

insts = [ISet 0 n, IStore 0 addr]

in (counter', (insts, addr))

EAdd e1 e2 ->

let (counter', (insts1, addr1)) = compile e1 counter

(counter'', (insts2, addr2)) = compile e2 counter'

(counter''', addr) = fresh counter''

insts = [ILoad 1 addr1, ILoad 2 addr2, IAdd, IStore 0 addr]

in (counter''', (insts1 ++ insts2 ++ insts, addr))

4.2 The State type

Let’s define how this “mutable” variable works a bit more formally. Everything that uses the
variable needs to follow the pattern of taking in the current value and returning a pair of the new
value and the result. We can define the type State s a as a function that threads the state of the
variable through itself, where s is the type of the state and a is the type of the result.

newtype State s a = State {runState :: s -> (s, a)}

(newtype is basically the same as data; runState is the name of a field that has type s -> (s,

a).)

There are two operations you can do with a mutable variable: get the current value and set the
current value. We can define those in terms of State:

7

get :: State s s

get = State (\c -> (c, c))

put :: s -> State s ()

put c = State (_ -> (c, ()))

get leaves the value of the variable unchanged (the first c in (c, c)) and also returns it as the
result (the second c in (c, c). put ignores the current value of the variable and instead replaces
it with the value given to it; it returns nothing interesting (() is the unit type and value).

As a technicality, we also need a way to create a State computation that simply returns a normal
value without getting or setting the variable:

yield :: a -> State s a

yield x = State (\c -> (c, x))

We would also like to avoid having to manually thread the latest value of the variable through our
computation; we just care about the result values and would prefer the current state to be implicitly
updated behind the scenes, like a real mutable variable. We can define a helper function that takes
in a State and a function to call on the result value, which returns another State:

andThen :: State s a -> (a -> State s b) -> State s b

andThen s f =

State

(\c ->

let (c', x) = runState s c

in runState (f x) c'

)

(runState s c is equivalent to (runState s) c; first it accesses the runState field of s, which is
a function that takes in the current value of the variable, then it applies that function to c.)

Now we can rewrite fresh to use these new operators:

fresh :: State Addr Addr

fresh =

get `andThen` \counter ->

put (counter + 1) `andThen` \() ->

yield counter

Then we can rewrite compile:

compile :: Expr -> State Addr ([Inst], Addr)

compile expr = case expr of

ENum n ->

fresh `andThen` \addr ->

let insts = [ISet 0 n, IStore 0 addr]

in yield (insts, addr)

EAdd e1 e2 ->

compile e1 `andThen` \(insts1, addr1) ->

compile e2 `andThen` \(insts2, addr2) ->

8

fresh `andThen` \addr ->

let insts = [ILoad 1 addr1, ILoad 2 addr2, IAdd, IStore 0 addr]

in yield (insts1 ++ insts2 ++ insts, addr)

Finally, we can use runState to kick off a stateful computation starting from an initial value of the
variable (0 in this case), then discard the final value when we’re done with it.

compileHalt :: Expr -> [Inst]

compileHalt expr =

let (_, (insts, addr)) = runState (compile expr) 0

in (insts ++ [ILoad 0 addr, IHalt])

5 The monad

Take another look at the two andThen functions we defined earlier:

andThen :: Result e a -> (a -> Result e b) -> Result e b

andThen r f = case r of

Err e -> Err e

Ok x -> f x

andThen :: State s a -> (a -> State s b) -> State s b

andThen s f =

State

(\c ->

let (c', x) = runState s c

in runState (f x) c'

)

Although their implementations are completely different, their types are almost identical. Where
the first one uses Result e, the second one uses State s.

The other thing to notice is that both Result and State have a way of taking any value of type a
and wrapping it in something of type Result e a or State s a. For State, that was the function
yield; for Result, that was the constructor Ok.

It turns out that many types share a structure that allows functions like andThen and yield to be
implemented for them. These types are monads.

5.1 The Monad type class

Haskell comes with an abstraction for monads. This is the Monad type class. A type class is kind of
like an interface from object-oriented languages—it’s a collection of methods for a type—although
there are some differences that we won’t get into here.

There are two methods that we need to define for a monad m:

(>>=) :: m a -> (a -> m b) -> m b

pure :: a -> m a

9

>>=, pronounced “bind,” is the monad sequencing operator and it corresponds to the andThen

functions we defined. pure converts a “pure” value to a “monadic” value and it corresponds to
yield and Ok from earlier.

A well-behaved monad instance also needs to follow three laws:

• pure x >>= f should be the same as f x. Intuitively, this is because bind runs f on a
successful result of the previous monadic computation; if the previous computation simply
converted a pure value to a monadic value, we should be able to run f on that value directly
and skip the conversion.

• m >>= pure should be the same as m. Intuitively, this is because taking the result value of m
and converting it back into a monadic value shouldn’t change anything.

• m >>= (\x -> f x >>= g) should be the same as (m >>= f) >>= g. This is associativity:
intuitively, it says that it shouldn’t matter whether monadic binds are built up left-to-right
or right-to-left.

It’s possible to verify that the monad implementations for Result and State satisfy these laws.

5.2 A monad for Result and State

For technical reasons, pure is defined in a separate type class called Applicative—we won’t go
into what Applicative is, but it is another type class related to monads. In short, every Monad is
also an Applicative.

The implementations (defined with the instance keyword) for our Result type are, with some
boilerplate omitted:

instance Monad (Result e) where

(>>=) = andThen

instance Applicative (Result e) where

pure = Ok

And the implementations for our State type are:

instance Monad (State s) where

(>>=) = andThen

instance Applicative (State s) where

pure = yield

5.3 do notation

Now that we have our Monad instances, we can do something cool.

Did you notice that the programs written with andThen became increasingly indented as a new
lambda expression was used each time? This is known as rightward drift and it’s common for
monadic code, because each new step takes place “inside” the previous step, similar to continuation-
passing style.

10

Haskell provides a language feature to avoid rightward drift when using monads: do notation. do

notation is syntactic sugar for successive calls to a monad’s bind operator. When you would write:

foo `andThen` \x ->

bar `andThen` \y ->

pure (x + y)

Or equivalently, but more generally:

foo >>= \x ->

bar >>= \y ->

pure (x + y)

You can instead use a do expression:

do

x <- foo

y <- bar

pure (x + y)

The do expression is equivalent to the version with >>= above, but it looks more like an imperative
program with statements.

We can rewrite our interpreter to use do notation:

interp :: Map String Value -> Expr -> Result EvalError Value

interp env expr = case expr of

EVar x -> case Map.lookup x env of

Nothing -> Err UnknownVar

Just v -> Ok v

EBool b -> Ok (VBool b)

ENum n -> Ok (VNum n)

EAdd e1 e2 -> do

v1 <- interp env e1

n1 <- toNum v1

v2 <- interp env e2

n2 <- toNum v2

Ok (VNum (n1 + n2))

EIf e1 e2 e3 -> do

v1 <- interp env e1

b <- toBool v1

if b then interp env e2 else interp env e3

ELet x e1 e2 -> do

v1 <- interp5 env e1

let env' = Map.insert x v1 env

interp env' e2

And we can rewrite our compiler:

fresh :: State Addr Addr

fresh = do

11

next <- get

put (next + 1)

yield next

compile :: Expr -> State Addr ([Inst], Addr)

compile expr = case expr of

ENum n -> do

addr <- fresh

let insts = [ISet 0 n, IStore 0 addr]

yield (insts, addr)

EAdd e1 e2 -> do

(insts1, addr1) <- compile e1

(insts2, addr2) <- compile e2

addr <- fresh

let insts = [ILoad 1 addr1, ILoad 2 addr2, IAdd, IStore 0 addr]

yield (insts1 ++ insts2 ++ insts, addr)

6 Same program, different monad

So far, we’ve only seen programs that are written for a specific monad (Result or State). But the
true power of the monad comes from being able to write code that is generic over multiple monads.

Consider the function genstr, which generates a string with a given length and alphabet:

genstr :: (Monad m, MonadChoice m) => Int -> String -> String -> m String

genstr len alphabet suffix =

if len <= 0

then pure suffix

else do

c <- choose alphabet

genstr (len - 1) alphabet (c : suffix)

The key here is the use of a new type class that we defined, MonadChoice. It contains one method,
choose, which takes a list of elements and returns a single element (in the monad).

class MonadChoice m where

choose :: [a] -> m a

Since genstr is generic over the monad it uses, anyone who calls it can choose which monad they
would like, as long as it has a choose method. The behavior of each monad could potentially be
completely different. Basically, the choice of monad can reinterpret the same program with different
semantics!

6.1 Nondeterminism

Let’s try giving genstr nondeterministic semantics: we want it to collect every possible string that
it could generate into one big list. It turns out that a monad with these semantics already exists
in Haskell: it’s the list type! We only need to define the choose method as the identity function:

12

instance MonadChoice [] where

choose = id

Now all we need to do is tell Haskell that we would like genstr to give us a list of strings. We
can use :: to indicate that the return type should be [String]. In the REPL, this generates all
strings of length 3 using the characters a or b:

ghci> genstr 3 "ab" "" :: [String]

["aaa","baa","aba","bba","aab","bab","abb","bbb"]

6.2 Sampling

For long strings with many different characters, it would take too long to generate every possible
string. There are too many combinations. However, what if we only need need a small number of
strings? A monad that randomly samples the search space instead of exhaustively enumerating it
could generate one string at a time much more quickly.

We’ll define the type Sample as a function that takes in a pseudorandom number generator (PRNG),
then returns the new (possibly changed) state of the PRNG and a result. This type has both a Monad
and MonadChoice instance; the implementation for choose uses the PRNG to pick one element of
the list.

data Sample a = Sample {runSample :: StdGen -> (StdGen, a)}

instance Monad Sample where

m >>= f =

Sample

(\g ->

let (g', x) = runSample m g

in runSample (f x) g'

)

instance MonadChoice Sample where

choose xs =

Sample

(\g ->

let (i, g') = uniformR (0, length xs - 1) g

in (g', xs !! i)

)

instance Applicative Sample where

pure x = Sample (\g -> (g, x))

For convenience, we’ll also define a sample function that initializes the PRNG to a random seed
and runs the sample function with it:

sample :: Sample a -> IO a

sample s = do

13

g <- initStdGen

pure (snd (runSample s g))

Now we can generate very long strings with many different characters quickly. This would’ve taken
forever to run under the nondeterministic semantics, but under the sampling semantics, it’s virtually
instant:

ghci> sample (genstr 72 ['a' .. 'z'] "")

"yttdqpabyeqixgfixbtvywhyuldqbygbmkjadcmczonqgcptpwmgezemgmzvurzddvnkfogj"

14

	Introduction
	Haskell crash course
	Functions
	Types
	Pattern matching
	Comments

	Functions that fail
	Error-returning style
	Bubbling up errors
	Booleans and numbers
	Refactoring the interpreter

	Purifying state
	State-passing style
	The State type

	The monad
	The Monad type class
	A monad for Result and State
	do notation

	Same program, different monad
	Nondeterminism
	Sampling

