
Array Programming
Section 1. What is Array Programming?

Let’s start with trying to define what is array programming and array program-
ming langauges?

To start off, let’s say it is a programing language that allows you to work with
arrays or array-like data.

Well, that’s basically all languages - lists and vectors in Racket, tuples in Python,
arrays in C and JS, etc.

But then this definition does not mean anything really if it includes basically
every langauge.

I think the better definition is a languages that makes working with arrays easier
than it is in most general-purpose languages.

Let’s see what wikipedia has to say about it:

In computer science, array programming refers to solutions that al-
low the application of operations to an entire set of values at once.
Such solutions are commonly used in scientific and engineering set-
tings.

Modern programming languages that support array programming
(also known as vector or multidimensional languages) have been engi-
neered specifically to generalize operations on scalars to apply trans-
parently to vectors, matrices, and higher-dimensional arrays. These
include APL, J, Fortran, MATLAB, Analytica, Octave, R, Cilk Plus,
Julia, Perl Data Language (PDL).

This list has a lot of different langauges, and all of them are very different, with
a very disctinctive set of features. Let’s go through the history of array PLs,
look at some code examples and see if we can find any intersections.

Section 1.5. Example explanation detour

For the most part, the examples are going to be matrix multiplication. It’s
a small enough example making it easy and quick to explain. But it also is
extremely important, so important that a lot of ML/AI optimizations come
down to making matrix multiply faster and faster. There are other applications
like polyhedral optimizations (constraints can be represented as matrices) and
resource allocation in economics.

Section 2. History of Array Programming

Fortran, the Eternal As always, when we talk about history of programming
languages, Fortran is there.
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Originally developed in late 50s at IBM, it was designed to make number calcula-
tions and processing easier. (As is evident from the name, Formula Translator).

As for the feature set, it does not have many: for loops and indexing.

It’s still actively developed, but it did not get any new features that makes it
easier to program in (especially compared to other languages we’ll see later on).
It did get some features to make parallelizing easier, but they are just a different
kind of for-loops.

It’s also still actively used in the supercomputing field. A big part of scientific
code actually is still written and uses Fortran (in big part because of the compiler
and the total accumulated knowledge about making Fortran code run fast).
Even outside supercomputing, a lot of number processing code is still written
in it (also evident by the fact that Nvidia CUDA compiler supports Fortran).

do i = 0, n
do j = 0, n
Ans(i, j) = 0
do k = 0, n

Ans(i, j) = Ans(i, j) + A(i, k) * B(k, j)
end do

end do
end do

APL, programming math Stands for A Programming Language.

Developed in early 60s by Ken Iverson. The original design idea was that writing
programs should be similar to writing math notation. (There will be some
examples soon).

This is where we start to see some more interesting features that make program-
ming with arrays nicer:

• Tacit/point free programming
• Function lifting
• Lots of other built-in niceties

A ← M +.× N

life ← {⊃1 ⍵ ∨.∧ 3 4 = +/ +⌿ ¯1 0 1 ∘.⊖ ¯1 0 1 ⌽¨ ⊂⍵}

From Wikipedia page on APL

CV←{0⌈(,[2 3 4]3 3⌺⍵)+.×,[0 1 2]⍺}

Aaron Hsu, ARRAY 2023 “U-Net CNN in APL: Exploring Zero-Framework,
Zero-library Machine Learning”

But like always, it comes with cons: - Math is not ASCII, you would need some
extended character set. - Functions can only have 1 or 2 arguments. - Dynami-
cally typed (and extremely hard to statically typed) Types are extremely useful
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for compiling efficient code and for specification. - Even parsing is delayed until
runtime because of the irregular structure (The iteration structure and behavior
is dependent on runtime values) - Due to all this, it can just be interpreted and
compiling it still has not really been solved (and probably never will).

J, APL but ASCII Developed by the same person, Ken Iverson in the 90s.

More or less just APL, but in ASCII.

Has more or less the same problems as APL, but you can type it on a normal
keyboard now.

Futhark, the modern view The modern iteration on array programming.
The product of the PhD thesis of Troels Henriksen at DIKU (in 2014).

Functional programming view on array programming is the main design idea.
It is statically typed, has explicit iteration structure.

This allows it to be efficiently compiled to both parallel CPUs and GPUs.

Has been is actively developed since, adding features like function lifting, auto-
matic differentiation and others.

To understand the following code snippet, we need to introduce some of the
functions used.

def map [m] (A : [m] 'a) (f: 'a -> 'b) : [m] 'b
def map2 [m] (A : [m] 'a) (B : [m] 'b) (f: 'a -> 'b -> 'c) : [m] 'c
def reduce [m] (A : [m] 'a) (f: 'a -> 'a -> 'a) (init: 'a) : 'a
def transpose [m] [n] (A : [m][n] 'a) : [n] [m] 'a

def matmul_i32 [n][m][p] (A: [n][m]i32) (B: [m][p]i32) : [n][p]i32 =
map (\A_row ->

map (\B_col ->
reduce (+) 0 (map2 (*) A_row B_col))

(transpose B))
A

NumPy, the modern view 2 A Python library that has gained a lot of
popularity in the last decade or so.

A lot of code has been written in it, and for prototyping it works great. The
problem comes when you need to write something really performant. Python
has only one real way to be fast: call C/C++ code. That’s what most libraries
that need performance do. What this means if you want to make an often-used
function faster, you would probably need to write an implementation in C, and
then connect the FFI (foreign function interface, calling functions written in
one language from another). This kind of approach also lacks the ability to do a
lot of optimizations, since it would happen at runtime, so you have very limited
time to do it.
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There are quite a few benefits though. First of all, you get access to all of
Python, so a lot of things have already been implemented. Second of all, the
community is rather large, so getting help is usually quite fast and easy. Third
of all, even though I say the performance is not the best, it still is fast. All the
primitive functions have been hand-written and hand-optimized in C/C++ so
they are basically the best you can get. And Python serves as just glue for that
code, so it is not a big performance hit (for smaller programs).

numpy.matmul(M, N) # feels a little unfair
np.sum(A[:, :, np.newaxis] * B.T[np.newaxis, :, :], axis=1)

Remora, the modern view 3 Developed by Justin Slepak at Northeastern
over the course of his PhD.

Combines the niceties of APL with the flexibility of Scheme and a type system.

In general, not as expressive as Scheme, as Remora is not even Turing complete.
But it has a lot of expressivity for working with arrays specifically.

This also brings up a good point about design of languages: it’s always about
the balance between how general purpose it is, how expressive it is and how
easy it is to compile.

Section 3 Principal Frame

The core to the programming model that Remora provides is the idea of the
principal frame.

To understand the principal frame, we first need to establish some definitions.

First of all, in Remora everything is an array. Array has 3 parts to it: data stored
(all the elements), element type and shape. Shape is a sequence of dimensions.
Rank is the length of shape. (Important: totally different from rank in linear
algebra)

1 ; shape = [], type = int, data = [1]
[1 2 3] ; shape = [3], type = int, data = [1 2 3]
[[1 2 3] [4 5 6]] ; shape = [2 3], type = int, data = [1 2 3 4 5 6]

Functions specify the rank of the arguments they accept:

(define (add1 (n 0)
(+ n 1))

(define (dot-product (v 1) ...)
(define (matrix-multiply (m 2) (n 2) ...)

In an application, principal frame is the argument frame with the longest shape.
All other arguments must be the prefix of the principal frame.

Let’s look at an example to see what’s happening.
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(add1 2) ; frame is []
(add1 [1 2 3]) ; frame is [3]
(add1 [[1 2 3] [4 5 6]]) ; frame is [2 3]
(dot-product [[1 2 3] [4 5 6]]) ; frame is [2]
(matrix-multiply [[1 2] [3 4] [5 6]] [[1 0] [0 1]]) ; frame = []

The cool thing is that function position in an application is also an array.

([add1 sub1] 2)
> [3 1]

The way this works is by ‘ignoring’ the suffix part of index for non-principal
frame arguments. To understand what exacly happens, let’s translate one of
the calls into a langauge with for loops.

(add1 [[1 2 3] [4 5 6]])
->
let in = [[1 2 3] [4 5 6]]
for i = 0 to 1:
for j = 0 to 2:
result[i, j] = add1(in[i, j])

([add1 sub1] [[1 2 3] [4 5 6]])
->
let f = [add1, sub1]
let in = [[1 2 3] [4 5 6]]
for i = 0 to 1:
for j = 0 to 2:
result[i, j] = f[i](in[i, j])

Section 4. Remora demo

Let’s start with some linear algebra functions that will give us some practice.

(define (dot-product (v 1) (w 1))
(reduce + 0 (* v w)))

(dot-product [1 0 2] [2 3 1])
> 4

(define (matrix*vector (a 1) (B 2))
(reduce + 0 (* a B)))

(define (matrix-multiply (A 2) (B 2))
(matrix*vector A B))

> (matrix-multiply (iota [2 2]) (iota [2 3]))
[[3 4 5] [9 14 19]]
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One important thing to notice here is that dot-product and ma-
trix*vector look exactly the same. Can we replace one with the other?

(define (matrix-multiply-2 (A 2) (B 2))
(dot-product A B))

> (matrix-multiply-2 (iota [2 2]) (iota [2 3]))
error: incompatible argument frames '(#() #(2) #(3))

There is also a tiny definition of matrix multiply.

(define (matrix-mutliply-3 (A 2) (B 2))
(#r(0 0 2)reduce + 0 (#r(1 2)* A B)))

> (matrix-multiply-3 (iota [2 2]) (iota [2 3]))
[[3 4 5] [9 14 19]]

We used a new language construct called rerank. It forces the function after
it to use specific ranks for arguments. The multiply case says “Multiply each
row in A by entire matrix B”. The reduce case says “Sum rows (point-wise) in
each matrix that’s the result of the multiplication.” You could also achieve by
inline application:

((fn ((A 1) (B 2)) (* A B)) A B) ; instead of (#r(1 2)* A B)

For fun, let’s try some statistics.

(define (mean (arr 1))
(define sum (reduce + 0 arr))
(define n (length arr))
(/ sum n))

> (mean [1 2 3 4 5])
3

But what if we want to get mean of an array of rank more than 1? We can do it,
but we need two more pieces: ravel and shape-of. ravel turns a nested
array into a vector. shape-of returns a vector representing the shape of the
array

(define (mean (arr all))
(define n (reduce * 1 (shape-of arr)))
(define data (ravel arr))
(define sum (reduce + 0 data))
(/ sum n))

> (mean [1 2 3 4 5])
3
> (mean [[1 2] [3 4]])
5/2 = 2.5
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> (#r(1)mean [[1 2] [3 4]])
[1.5 3.5]

(define (variance (arr all))
(define mean-arr (mean arr))
(define diff (- arr mean-arr))
(define n (reduce * 1 (shape-of arr)))
(define sqr-sum (reduce + 0 (ravel (* diff diff))))
(/ sqr-sum (sub1 n)))

> (variance [1 2 3 4 5])
5/2 = 2.5

> (variance [[1 2] [3 4]])
5/3

> (#r(1)variance [[1 2] [3 4]])
[1/2 1/2]

To end this section, we are going to compare convolution written in numpy and
in Remora.

Remora:

(define (conv-2d (in 2) (weights 2))
(define all-windows (windows in (shape-of weights)))
(#r(0 0 1)reduce + 0 (#r(0 0 1)reduce + 0 (#r(2 2)* all-windows weights))))

(define (conv-2d-pad (in 2) (weights 2) (pad 0))
(define origin [(- pad) (- pad)])
(define padded-in (subarray/fill in origin (+ (* 2 pad) (shape-of in)) 0))
(conv-2d padded-in weights))

And here’s a bonus version that can handle n-dimensional convolution (can only
happen in untyped):

(define (conv-nd (in all) (weights all))
(define n (length (shape-of in)))
(define all-windows (windows in (shape-of weights)))
(define outer-frame (take n (shape-of all-windows)))
(define replicated-weights ((fn ((_ 0)) weights) (iota outer-frame)))
(reduce-n + 0 (* all-windows replicated-weights) n))

(define (conv-nd-pad (in all) (weights all) (pad 0))
(define origin ((fn ((_ 0)) (- pad)) (shape-of in)))
(define padded-in (subarray/fill in origin (+ (* 2 pad) (shape-of in)) 0))
(conv-nd padded-in weights))
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NumPy code for convolution (credit to NumberSmithy)

def asStride(arr, sub_shape, stride):
s0, s1 = arr.strides[:2]
m1, n1 = arr.shape[:2]
m2, n2 = sub_shape[:2]

view_shape = (1+(m1-m2)//stride, 1+(n1-n2)//stride, m2, n2)+arr.shape[2:]
strides = (stride*s0, stride*s1, s0, s1)+arr.strides[2:]
subs = np.lib.stride_tricks.as_strided(

arr, view_shape, strides=strides, writeable=False)

return subs

def conv3D3(var, kernel, pad=0):
kernel = checkShape(var, kernel)
if pad > 0:

var_pad = padArray(var, pad, pad)
else:

var_pad = var

view = asStride(var_pad, kernel.shape, 1)
conv = np.sum(view*kernel, axis=(2, 3))

return conv

Couple of notes: - NumPy version is supports strides, while Remora does not.
It’s not a very big add (and I’ve done it before), but it requires indexing ma-
nipulation that’s not very well done right now. - There are a lot of different
implementations of convolution in Python, I chose this one because it’s the clos-
est in style to the Remora code (even though it’s slower). - If you need more
exotic reduction operator in Python, you are out of luck. You would need to
implement it yourself (vs just passing a different function in Remora)

Section 5. Where are the types?

I’ve mentioned before that Remora is a statically typed language. So where are
all the types? The Remora code we have been working on is actually untyped
Remora. It’s a hash lang in Racket and uses a lot of Racket’s built-ins to provide
all the nice utilities.

There exists a definition for a typed Remora. It’s the key to compiling a language
like Remora.

Typed Remora has a dependent type system. I won’t go into too much technical
detail, because it will take at least a lecture to go through it. Put simply,
now you can put arbitrary expression/programs into your types. That makes it
undecidable in general, which is why usually you work with restricted dependent
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types.

In Remora, types contain shape information like [int] is a scalar integer,
[float [2]] is an array containing two floats, and [int [10 12]] is a 10
by 12 integer matrix.

Dimension is either constant, variable, or a sum of dimensions. Shape is either
a sequence of dimensions, variable or append of shapes.

Why is it so restrictive, what if I want to do multiplication? Well, then it
becomes undecidable.

Then why do we want such a type system? We can’t even type something like
ravel that we used in the demo earlier. It becomes way easier to compile
it, because it shows you the entirety of the iteration structure. It’s one of the
differences between Remora and APL that allows the former to be compiled,
even though it has a lot of similar features. And you can still compile something
like that, you just don’t know the dimensions of arrays anymore (which makes
compiling way harder).

Section 6. Parallelism

First of all, what is parallelism? The parallelism is a property of programs that
allows you to run parts of the program in parallel. Running in parallel means
allocating work to independent execution units to speed up execution.

Why do we care? Well, if you have 1000 units of computation, all indepen-
dent (like a map), and 10 execution units. Assume 1 unit of computation takes
1 second. If you can perfectly schedule all 10 execution units, it will take only
100 seconds vs 1000 seconds using a single one.

New hardware contains hundreds of CPU cores (like server CPUs, Xeons and
EPYCs) and thousands of GPU cores. If you can do perfect parallelism, you
can speed up program execution by a massive factor.

Why other languages do not do this? Well, a variety of reasons. First
of all, it interacts in a weird way with side effects. The order of execution
becomes non-deterministic so you cannot rely on that anymore. Secondly, most
languages don’t reason at all about parallelism, and the programmer does not
provide annotations for what can and cannot be parallel. So, something like a
compiler needs to take this unparallelized code and try to reason about it to
find

Why Remora then? The design of type system, operators and core lan-
guages exposes very regular and parallelizable iteration structure, so it’s much
easier to compile parallel code compared to something like C++ or Fortran.
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Section 7. So, what is array programming about?

Manipulating data to fit the computation better. In both Futhark and Remora,
you don’t write loops around your data/arrays. You instead restructure the data
so that it fits the computational model you have, like maps, reduces, etc and
avoiding using filters and such because they make all of your shapes unknown.

Section 8. Why isn’t everyone using these languages then?

Fortran Well, it is totally used. It is very popular in the scientific and super-
computing space. One of the main reasons is that it has an incredible optimizing
compiler that has been in development and a center of attention in compilers
research.

APL There is variety of reasons why it failed to become popular (even though
Ken Iverson got a Turing Award for it). First, it’s quite slow because you cannot
really compile it. Second, the language was not really designed to grow at all.
Two quotes here:

“APL is like a diamond. It has a beautiful crystal structure; all of
its parts are related in a uniform and elegant way. But if you try to
extend this structure in any way - even by adding another diamond
- you get an ugly kludge. LISP, on the other hand, is like a ball of
mud. You can add any amount of mud to it and it still looks like a
ball of mud.”

– Joel Moses

APL was designed by one man, a smart man—and I love APL—but
it had a flaw that I think has all but killed it: there was no way for
a user to grow the language in a smooth way.

– Guy Steele Jr., Growing a Language, OOPSLA 1998

APL examples I showed exactly point to the problem with APL - you cannot
really extend it in an organic way. Function names that a user defines are written
almost always with ASCII characters, while built-in functions use glyphs. So,
now when you try to write a library, calling library code looks very different
from built-in code.

There is also an issue of code itself. APL is extremely terse, and while it’s nice to
showcase how powerful and expressive it is, it becomes really hard to maintain
and debug.

J Similar to APL. Even though it’s easier to grow, it was closed-source until
2011 (and licence was quite expensive otherwise). But Ken Iverson did do a lot
of consulting at Wall Street using J.
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Futhark Futhark is still a young language, and it’s a research language. No
company will use a research language for critical things. But it doesn’t have the
same flaws as APL does.

Remora Even younger research project, and does not have a good compiler
yet.

Section 9. Conclusion

Array Programming is very specialized niche in Programming Languages. It’s
not even close to being a general purpose language, but what they are made
for, they do well. As an example of this, neither Futhark nor Remora have any
recursion or for-loops, they are both terminating languages (which plays to their
advantage).
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