Lecture 23: Probabilistic Programming

Steven Holtzen
s.holtzengnortheastern.edu

CS4400/5400 Fall 2024

1 What are Probabilistic Programs?

Probabilistic programming languages (PPLs) are programming languages whose semantics are prob-
ability distributions

Their defining feature is the ability to introduce and manipulate first-class probabilistic uncertainty

As an example, consider the following syntax:

x « flip o.5;
y + flip o.5;
return x || y

This program evaluates to a probability distribution that maps #t to 0.25. and #f to 0.75. The process
of computing the probability that a probabilistic program returns a particular value is called proba-
bilistic inference.

The flip 0.5 syntax denotes a random Boolean variable that is true with probability 1/2 and false
with probability 1/2. In general, flip p will be true with probability p and false with probability

1—p.
We use monadic style for the syntax of probabilistic programs, similar to what we saw in Lecture

19. The syntax x < flip 0.5 binds the outcome of the coin flip to the variable X. Note that X is a
Boolean.

The syntax return x || vy lifts the pure computation x || y to a probability distribution on
Booleans.

Why do we care about probabilistic programs?

- Reasoning about the probability that something happens is broadly useful (failure probabilities,
game-playing, forecasting, insurance, stock markets, fraud detection, etc.). Probabilistic pro-
gramming languages can automate this process.

- Reasoning about randomized algorithms and inherent uncertainty for program verification.

s.holtzen@northeastern.edu

2 Implementing a Simple PPL

¢ Here is our abstract syntax:

;33 pure expressions

(struct eif (guard thn els) #:transparent)
(struct eand (e1 e2) #:transparent)
(struct eor (e1 e2) #:transparent)

(struct enot (e) #:transparent)

(struct ebool (v) #:transparent)

(struct eident (id) #:transparent)

;;; probabilistic expressions

(struct ebind (id e1 e2) #:transparent)
(struct ereturn (e) #:transparent)
(struct eflip (p) #:transparent)

¢ Interpreting pure expressions is standard, which is the main reason why we used a monadic style to
define our language:

;33 interp-pure : env -> expr -> bool
(define (interp-pure env e)
(match e
[(ebool b) b]
[(eif guard thn els)
(if (interp-pure env guard)
(interp-pure env thn)
(interp-pure env els))]
[(eand e1 e2)
(and (interp-pure env e1) (interp-pure env e2))]
[(eor e1 e2)
(or (interp-pure env e1) (interp-pure env e2))]
[(enot e)
(not (interp-pure env e))]
[(eident id) (hash-ref env id)]))

¢ Implementing the impure probabilistic component of the semantics is a bit more involved, so let’s do
it in stages.

3 Implementing the Probabilistic Semantics

¢ One way of understanding the semantics of PPLs is in terms of possible worlds. A possible world is
an assignment to each f1ip expression: for example, the possible worlds for the example on the first
page are:

r=H#ty=#t r=ty=+f r=#fy=#t r=H#fy=#f

w1 w2 w3 wWa

e The probability of each possible world is given by the product of the parameters for each flip, and
is denoted Pr(w). For example, Pr(w;) = 0.5 x 0.5 = 0.25.

* We are interested in the semantics for the whole program: in particular, we want to know the prob-
ability that at least one of X and y are true. To compute this, we can sum probability of the possible
worlds where this is the case. This is Pr(w;) + Pr(ws) + Pr(w3) = 0.75.

* Now, let’s design an interpreter for our language that follows these semantics.

¢ The interpreter for probabilistic terms will produce probability distributions, which have the follow-
ing datatype and interface:

(struct distribution (probs) #:transparent)

(define (make-dist trueprob falseprob)
(distribution (hash #t trueprob #f falseprob)))

(define (true-prob dist)
(hash-ref (distribution-probs dist) #t))

(define (false-prob dist)
(hash-ref (distribution-probs dist) #f))

* Now we can fill in the skeleton of our interpreter:
;33 interp-dist : env -> expr -> prob
;33 returns the probability that an expression evaluates to true
(define (interp-dist-h env e)
(match e
[(ereturn e)
(define res (interp-pure env e))
(if res
(make-dist 1 @)
(make-dist e 1))]
[(eflip p) (make-dist p (- 1 p))]
[(ebind id e1 e2)

D)

e The semantics of ereturn and eflip are relatively straightforward: ereturn e assigns a proba-
bility of 1 to whichever value e evaluates to, and flip p assigns a probability p to the true outcome
and 1-p to the false outcome.

* Bind is quite tricky, and is where most of the work in our interpreter happens. It helps to look at a
couple of small examples of how we want bind to work.
¢ Consider the following tiny program:

x «+ flip 0.3;
return Xx

¢ Intuitively, how should we evaluate this program? Intuitively, it has the following steps:

— Compute the probability p; and py that flip 0.3 evaluates to #t and #f respectively
— Substitute in the two possible values for x into return x, and evaluate the semantics

- Average these two semantics together weighted by p; and py

* We can summarize this using a judgment:

flip 0.3 | {#t— 0.3,#f — 0.7}
return #t | {#t— 1,#f+— 0} return #f | {#t— 0,#f — 1}

x « flip 0.3; return x 0.3 x {#t— 1,#f — 0} + 0.7 x {#t — 0,#f — 1}

* Now we can implement these semantics. We first define some auxiliary functions for manipulating
probability distributions:

;33 scale a distribution by a constant p
(define (scale-dist dist p)
(distribution
(hash #t (* (true-prob dist) p)
#f (» (false-prob dist) p))))

;33 add two distributions point-wise
(define (add-dist disti1 dist2)
(distribution
(hash #t (+ (true-prob dist1) (true-prob dist2))
#f (+ (false-prob dist1) (false-prob dist2)))))

* Now, using these auxiliary functions, we can give the semantics for bind:

(define (interp-dist-h env e)
(match e

[(ebind id e1 e2)
; first, evaluate e1 to a distribution
(define ei1dist (interp-dist-h env e1))
; next, evalate e2 for id = #t and id = #f
(define e2true (interp-dist-h (hash-set env id #t) e2))
(define e2false (interp-dist-h (hash-set env id #f) e2))
; now, construct the new distribution
(add-dist
(scale-dist e2true (true-prob eidist))
(scale-dist e2false (false-prob eadist)))]))

4 Programming in a Probabilistic Programming Language

* The code we provided has a small parser for our tiny probabilistic programming language, we we
can use for writing some simple example programs

* We can test our implementation:

> (interp-dist
(parse-prob '(x <- (flip 0.4)
(y <- (flip o.6)
(return (and x y))))))
(distribution '#hash((#f . 0.76) (#t . 0.24)))

¢ Let’s try to program something a bit more interesting. Consider the following scenario that models
relationships between symptoms and diseases:

- 2% of people have a cold.
— 1% of people have the flu.

- If you have the flu, then there is a 10% chance you have a fever; if you have a cold and no flu,
then there is a 2% chance you have a fever; otherwise, there is a 0.1% chance you have a fever.

Then, what is the chance that an average person has a fever?

¢ We can model this scenario using a probabilistic program:

> (define disease-model
(parse-prob '(flu <- (flip e.01)
(cold <- (flip 0.02)
(feverIfFlu <- (flip 0.1)
(feverIfCold <- (flip @.02)
(feverHealthy <- (flip 0.001)
(return (if flu feverIfFlu
(if cold feverIfCold
feverHealthy))))))))))
> (interp-dist disease-model)
(distribution '#hash((#f . ©.9976337999999999) (#t . 0.0023662)))

5 Observation and Bayesian Conditioning

¢ It is often useful when reasoning about probabilities to be able to update your beliefs in light of new
information: to ask what is the probability of this given that?

¢ For example, we might want to be able to perform medical diagnosis: i.e., to compute the probability
that a patient has a particular disease given that the patient has some collection of observed symptoms.

e We can support this style of reasoning in our probabilistic programs with the addition of a probabilis-
tic term observe ei1 e2, which denotes observing that the outcome e1 holds and then executing
e2.

* As a simple example we can consider a simple extension of the coin flipping scenario where we
observe that at least one coin is true, and ask for the probability that one of the coins is true:
x « flip o.5;
y «+ flip o.5;
observe x || y;
return Xx

Intuitively, the probability that X is true should increase, since the observation gives us additional
information about the state of x and y (i.e., that at least one of them must be true)

* In terms of possible worlds, what is happening with observe (recall the possible worlds from ear-
lier)? Intuitively, it does two things:

— It eliminates the worlds that violate the observation (i.e., it eliminates w4 by setting its probability
to 0)

— It renormalizes the remaining worlds so that their total probability mass is still 1
The end result of this process is that Pr(w;) = Pr(ws) = Pr(ws) = 0.25/0.75 = 1/3 and Pr(ws) = 0.

Then, this program should evaluate to a probability distribution that assigns #t the probability 2/3.
This matches our intuition that the probability that x is true should increase upon observation.

6 Implementing Conditioning

* We will handle the two stages of observation separately. First, we will update our interp-dist-h
function to output unnormalized probability distributions that do not necessarily sum to 1:
;33 interp-dist : env -> expr -> prob
;33 returns the probability that an expression evaluates to true
(define (interp-dist-h env e)

(match e
[(ereturn e)
(define res (interp-pure env e))
(if res
(make-dist 1 @)
(make-dist @ 1))]
[(eflip p) (make-dist p (- 1 p))]
[(ebind id e1 e2)
; first, evaluate e1 to a distribution
(define eadist (interp-dist-h env e1))
; next, evalate e2 for id = #t and id = #f
(define e2true (interp-dist-h (hash-set env id #t) e2))
(define e2false (interp-dist-h (hash-set env id #f) e2))
; now, construct the new distribution
(add-dist
(scale-dist e2true (true-prob eiadist))
(scale-dist e2false (false-prob eiadist)))]
[(eobserve e1 e2)
(if (interp-pure env e1)
(interp-dist-h env e2)
(make-dist 0 0))1))

* Notice how the semantics of eobserve is relatively simple: if the guard of the observation is false,
then it outputs the 0 distribution (assigns zero to both the #t and #f outcome).

¢ Then, to compute the semantics of the program, we must renormalize:

(define (normalize dist)
(define ¢ (+ (true-prob dist) (false-prob dist)))
(make-dist (/ (true-prob dist) c)
(/ (false-prob dist) c)))

(define (interp-dist e)
(normalize (interp-dist-h (hash) e)))

* Now we can again test our program:

> (interp-dist
(parse-prob '(x <- (flip 1/2)
(y <- (flip 1/2)
(observe (or x y)

(return x))))))
(distribution '#hash((#f . 1/3) (#t . 2/3)))

7 Programming with Observations: Medical Diagnosis

* Returning to our medical diagnosis example, now we can ask: what is the probability that a patient has a
flu given that they have a fever?

> (define disease-model
(parse-prob '(flu <- (flip 0.01)
(cold <- (flip 0.02)
(feverIfFlu <- (flip o.1)
(feverIfCold <- (flip 0.02)
(feverHealthy <- (flip 0.001)
(fever <- (return (if flu feverIfFlu
(if cold feverIfCold
feverHealthy)))

(observe fever
(return f1u))))))))))

> (interp-dist disease-model)

(distribution '#hash((#f . ©.5773814554982672) (#t . 0.4226185445017327)))

8 Hardness of Inference

¢ Clearly, our approach to inference will not scale very well. For example, the following program will
time out if you try to perform inference on it:

(define hard-model
(parse-prob '(x1 <- (flip 0.5)

(x2 <- (flip e.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip e.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip @.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip e.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip e.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip e.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)
(x2 <- (flip o.5)

0.
(return x2)))))))))))3))))))))))))))))))

® A key research direction in probabilistic programming languages involves designing scalable infer-
ence

9 Examples of Probabilistic Programming Languages in the Wild

Probabilistic programming languages are becoming increasingly widely deployed and are beginning
to have some impact

There are a number of probabilistic programming languages that have been developed and deployed
in industry for various applications

Stan: https://mc-stan.org/
Pyro (originally developed by Uber): https://pyro.ai/
PyMC3: https://www.pymc.io/projects/docs/en/stable/learn.html

Edward/Tensorflow Probability (Google): https://www.tensorflow.org/probability

10

https://mc-stan.org/
https://pyro.ai/
https://www.pymc.io/projects/docs/en/stable/learn.html
https://www.tensorflow.org/probability

10 Roulette

¢ Here is a preview of some work that our group is currently doing in the space of designing scalable
probabilistic programming languages

* Our group has made a new probabilistic programming language based on Racket called “Roulette”
that scales quite well on some large programs, while being expressive enough to support almost all

of Racket[]

* Roulette’s syntax looks just like Racket, but with the addition of f1ip and observe:

#lang roulette/example/discrete

> (flip o0.5)

#hash((#t . o.5) (#f . 0.5))
; roulette can

> (and (flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip
(flip

©@ O 0O 00O 0O O0OO0OO0OO0OOOOLOLOOOOHOLOOOOO OO 0 6

support large computations! this completes instantly:

.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5)
.5))

#hash((#t . 1.862645149230957e-9) (#f . ©.9999999981373549))
> (define coini1 (flip 0.5))
> (define coin2 (flip o.5))
> (observe (or coini coin2))

> coin1

#hash((#t . 0.6666666666666666) (#f . ©.3333333333333333))
; roulette supports functions

> (define (add-sometimes x y)

> (if (flip o.5)

(+ xy)
X))

I This work isn’t published yet, and was just submitted to a conference 3 weeks ago! The project is led by Cameron Moy, with help
from Jack Czenszak, John Li, and Brianna Marshall. If you would like to see a preprint, email me.

11

> (add-sometimes 10 20)
#hash((10 . 0.5) (30 .

0.5))

12

11 Probability with Effects

#lang racket
(require effect-racket)
(effect flip (prob))

(define (process r prob b)
(match r
[#t prob]
[#f o]
[r (if b (» r prob) (x (- 1 prob) r))1))

(define (prob-service)
(handler

[(flip prob)

(define r1 (continue #t))
(define r2 (continue #f))
(define p1 (process ri prob #t))
(define p2 (process r2 prob #f))
(+ p1 p2)1))

(with ((prob-service))
(define a (flip 1/3))
(define b (flip 1/2))
(and a b))

13

	What are Probabilistic Programs?
	Implementing a Simple PPL
	Implementing the Probabilistic Semantics
	Programming in a Probabilistic Programming Language
	Observation and Bayesian Conditioning
	Implementing Conditioning
	Programming with Observations: Medical Diagnosis
	Hardness of Inference
	Examples of Probabilistic Programming Languages in the Wild
	Roulette
	Probability with Effects

