
Lecture 4: Inference Rules

Steven Holtzen
s.holtzen@northeastern.edu

CS4400/5400 Fall 2024

1 Inference Rules

• Inference rules are powerful notation for describing recursive algorithms and indutively-defined
data-structures.

• We will use them to describe interpreters, type systems, and prove things about programs.

• We’ll start by revisiting a recursive function we saw earlier, the factorial function:

fact(n) =

{
1 if x = 0

n× fact(n− 1) otherwise.
(1)

• The above uses standard “math notation” you may have seen before in another class. Here is another
way of writing the same program using Racket:

> (define (fact n)
(if (equal? n 0) 1 (× n (fact (- n 1)))))

> (fact 4)
24

• There is a third style of notation for describing the fact function called inference rules, which look
like this:

fact(0) = 1
(FACTBASE)

fact(n− 1) = v

fact(n) = n× v
(FACTIND)

• Inference rules consist of two pieces: premises and conclusions. The premises go above the horizon-
tal line, and the conclusions go below the horizontal line.

• An inference rule with no premises is called an axiom. The FACTBASE rule above is an axiom. Axioms
are always true; these are the base cases of your induction.

• The FACTIND rule has both premises and conclusions. We read it as: “if fact(n − 1) = v for some
value v, then fact(n) = n× v.”

1

s.holtzen@northeastern.edu


2 Proving things using inference rules

• We can use these inference rules prove that fact(3) = 6 by drawing a derivation tree.

• The process works like this: first, we copy and paste what we want to prove as a conclusion to some
to-be-determined inference rule:

???

fact(3) = 6
(2)

• Now we ask: which inference rule can we apply to show this desired conclusion? There is only one possible
rule, FactInd:

fact(2) = v

fact(3) = 3× v
(FACTIND) (3)

• However, we are not done: we haven’t yet shown what fact(2) is equal to. We can only terminate
our proof when we hit a base case (i.e., an axiom). So, we keep going and apply the FactInd rule
again:

fact(1) = v1

fact(2) = 2× v2
(FACTIND)

fact(3) = 3× v
(FACTIND) (4)

• We are still not done, there is one more step of derivation:

fact(0) = 1
(FACTBASE)

fact(1) = 1× 1
(FACTIND)

fact(2) = 2× 1
(FACTIND)

fact(3) = 3× 2× 1
(FACTIND) (5)

• Now we are done. The above tree is called a derivation tree, and it is typically drawn bottom-up.
Each leaf (top of the tree) must be an axiom.

• Drawing this derivation tree is essentially running a factorial program by hand. Each recursive case (an
instance of FACTIND) requires performing a recursive call, which is either another inductive case or a
base case. We label the result of the recursive call with a variable (like v). Once we hit a base case, we
can replace the variables with concrete comptued values. This is why in Equation (5) we substituted
computed quantities (numbers) for variables (v, v1, ...).

• Once again we are in a host semantics situation: how do we interpret the meaning of numbers and
operations like × in derivation trees like those in Equation (5)? Once again we will use Racket as our
host semantics: we will assume that these numbers and operations represent Racket numbers and
Racket operations.

2



3 Inference Rules for a Calculator Interpreter

• Now let’s use our new inference rule notation to describe a calculator interpreter

• We will define a function eval that evaluates each syntactic calculator term to a number

• Recall the syntax for a calculator language:

(struct (enum n))
(struct (eadd e1 e2))
(struct (emul e1 e2))

• We can define inference rules that describe the semantics of our calculator language:

(eval (enum n)) = n
(E-NUM)

(eval e1) = v1 (eval e2) = v2

(eval (eadd e1 e2)) = (+ v1 v2)
(E-ADD)

(eval e1) = v1 (eval e2) = v2

(eval (emul e1 e2)) = (∗ v1 v2)
(E-MUL)

• Now we can draw derivation trees that describe evaluating our interpreter. For example, we can run
the program (+ (+ 1 2) 3):

(eval 1) = 1 (eval 2) = 1

(eval (+ 1 2)) = 3
(E-ADD)

(eval (3)) = 3
(E-NUM)

(eval (+ (+ 1 2) 3)) = 6
(E-ADD)

Note: we will sometimes use surface syntax instead of abstract syntax, and elide the name of rules, to
make drawing derivation trees more concise.

• Notice how these rules visualize running the interpreter. For this reason, we will sometimes refer to
drawing a derivation tree for a program as running an interpreter by hand.

3



4 Substitution Semantics for Let Language

• The “evaluates to” inductive definition is so common that we will introduce special notation to de-
scribe it: the relation e ⇓ v says e evaluates to v. This means exactly the same thing as eval(e) =
v; it’s just easier (and common convention) to write it this way. This is sometimes called the natural
semantics of a programming language.

• Let’s use this notation to describe the semantics for the let language from last lecture:

(enum n) ⇓ n
(E-NUM)

e1 ⇓ v1 e2 ⇓ v2

(eadd e1 e2) ⇓ (+ v1 v2)
(E-ADD)

e1 ⇓ v1 e2[x 7→ v1] ⇓ v2

(let x e1 e2) ⇓ v2
(E-LET)

• Recall that the syntax e2[x 7→ v1] substitutes the value v1 for x in e2.

• Let’s look at the rule for E-LET closely. What it says is: if e1 evaluates to a value v1 and e2[x 7→ v1]
evaluates to v2, then the expression (let x e1 e2) evaluates to v2. Notice how there is a data
dependence between the two premises: the value v1 is referred to by both the rule for evaluating e1
and e2. This is permitted: we just need to ensure that this value v1 is the same in both locations.

• Now we can run a let program by hand. Let’s run the program (let x 10 (+ x 5)):

10 ⇓ 10
(E-NUM)

10 ⇓ 10 5 ⇓ 5

(+ x 5)[x 7→ 10] ⇓ 15
(E-ADD)

(let x 10 (+ x 5)) ⇓ 15
(E-LET)

• We will handle errors differently in inference rule notation than in Racket. In our inference rule nota-
tion, it is considered an error if we get “stuck” (meaning, there is no rule to apply to make progress).

• For example, if we try to run the program that consists solely of an identifier x, then we get stuck
immediately because there is no rule to evaluate an identifier.

4



5 Environment-passing Semantics for Let Language

• The problem with substitution is that it is inefficient: we wouldn’t want to actually use substitution
to implement a programming language.

• A more practical solution to implementing the let language is to use an environment that maps
identifiers to values. The environment will store the current value for a particular variable, and when
an identifier is encountered during execution its value can be looked up in the environment.

• We will use an immutable hash table that maps strings (identifiers) to numbers as our environment.
Immutable hash tables have the follow usage in Racket:

> (define my-tbl (hash)) ; declare an immutable empty hash−table
> (define my-tbl-with-x (hash-set my-tbl "x" 10)) ; add ”x” with value 10
> (hash-has-key? my-tbl-with-x "x")
#t
> (hash-has-key? my-tbl "x") ; check if my−tbl contains ”x”
#f
> (hash-ref my-tbl-with-x "x") ; look up ”x” in my−tbl−with−x
10

• Here is an example implementation in Racket of an environment-passing interpreter:

;;; type expr =
;;; | add of expr × expr
;;; | mul of expr × expr
;;; | num of number
;;; | elet of string × expr × expr
(struct eadd (e1 e2) #:transparent)
(struct enum (n) #:transparent)
(struct elet (id assignment body) #:transparent)
(struct eident (id) #:transparent)

;;; eval : expr → (string, number) hashtable → number
;;; evaluates an expression e in environment env to a number
(define (eval e env)

(match e
[(enum n) n]
[(eadd e1 e2) (+ (eval e1 env) (eval e2 env))]
[(elet id assignment body)
(let× [(v-assgn (eval assignment env))

(new-env (hash-set env id v-assgn))]
(eval body new-env))]

[(eident id)
(if (hash-has-key? env id)

(hash-ref env id)
(error "unbound identifier"))]))

(check-equal? (eval (elet "x" (enum 10) (eident "x")) (hash)) 10)
(check-equal? (eval (elet "x" (enum 10)

(elet "x" (enum 20) (eident "x"))) (hash)) 20)

• Check: Why does the above implementation implement lexical scope? What property of the hash
tables ensures this?

5



6 Inference Rules for Environment-passing Semantics of Let Language

• Let’s get more practice with inference rules by using them to to describe the environment-passing
interpreter for the let language

• We will use the symbol ρ (pronounced “rho”) for our environment. Looking up an identifier x in ρ
is written ρ[x] (this corresponds to hash-ref). Immutably updating the table ρ to set x equal to v is
denoted ρ[x 7→ v] (this corresponds to hash-set). Checking if ρ contains x is denoted x ∈ ρ (this
corresponds with hash-has-key?).

• Now we can write down the environment-passing semantics of the let language in terms of inference
rules. These rules will define a function ⟨e, ρ⟩ ⇓ v, which is read “expression e with environment ρ
evaluates to value v”:

⟨(enum n), ρ⟩ ⇓ n
(E-NUM)

e1 ⇓ v1 e2 ⇓ v2

(eadd e1 e2) ⇓ (+ v1 v2)
(E-ADD)

x ∈ ρ ρ[x] = v

⟨x, ρ⟩ ⇓ v
(E-IDENT)

⟨e1, ρ⟩ ⇓ v1 ⟨e2, ρ[x 7→ v1]⟩ ⇓ v2

⟨(let x e1 e2), ρ⟩ ⇓ v2
(E-LET)

• Notice: the above rules differ quite substantially from the substitution-based semantics for let. One
big difference is that we now have a rule for evaluating identifiers.

• Now we can draw derivation trees that visualize running our environment-passing interpreter.

• Example: Draw the derivation tree that corresponds to evaluating (let "x" 10 x) with the envi-
ronment initially empty (ρ = {}):

10 ⇓ 10
(E-NUM)

x ∈ {x 7→ 10} {x 7→ 10}[x] = 10

⟨x, {x 7→ 10}⟩ ⇓ 10
(E-IDENT)

⟨(let "x" 10 x), {}⟩ ⇓ 10
(E-LET)

6


	Inference Rules
	Proving things using inference rules
	Inference Rules for a Calculator Interpreter
	Substitution Semantics for Let Language
	Environment-passing Semantics for Let Language
	Inference Rules for Environment-passing Semantics of Let Language

