Lecture 4: Inference Rules

Steven Holtzen
s.holtzen@northeastern.edu

CS54400/5400 Fall 2024

1 Inference Rules

Inference rules are powerful notation for describing recursive algorithms and indutively-defined
data-structures.

We will use them to describe interpreters, type systems, and prove things about programs.

We'll start by revisiting a recursive function we saw earlier, the factorial function:

fact(n) = {1 ifz=0 (1)

n x fact(n—1) otherwise.

The above uses standard “math notation” you may have seen before in another class. Here is another
way of writing the same program using Racket:

> (define (fact n)

(if (equal? n 0) 1 (X n (fact (- n 1)))))

> (fact 4)

24

There is a third style of notation for describing the fact function called inference rules, which look
like this:

v
(FACTIND)

(FACTBASE)
X v

fact(n—1) =
=n

fact(0) =1 fact(n)

Inference rules consist of two pieces: premises and conclusions. The premises go above the horizon-
tal line, and the conclusions go below the horizontal line.

An inference rule with no premises is called an axiom. The FACTBASE rule above is an axiom. Axioms
are always true; these are the base cases of your induction.

The FACTIND rule has both premises and conclusions. We read it as: “if fact(n — 1) = v for some
value v, then fact(n) =n x v.”

s.holtzen@northeastern.edu

2 Proving things using inference rules

e We can use these inference rules prove that fact (3) = 6 by drawing a derivation tree.

¢ The process works like this: first, we copy and paste what we want to prove as a conclusion to some
to-be-determined inference rule:

777

@)

fact (3) = 6

* Now we ask: which inference rule can we apply to show this desired conclusion? There is only one possible
rule, FactInd:

fact (2) =v
fact (3) =3 X

. (FACTIND) 3)

* However, we are not done: we haven’t yet shown what fact (2) is equal to. We can only terminate
our proof when we hit a base case (i.e., an axiom). So, we keep going and apply the Fact Ind rule
again:

fact (1) =wv;
fact (2) =2 X vy
fact (3) =3 xv

(FACTIND)
(FACTIND) 4)

* We are still not done, there is one more step of derivation:

(FACTBASE)
fact(0) =1

fact(l) =1x1
fact(2) =2x1
fact (3) =3 x2x1

(FACTIND)
(FACTIND)

(FACTIND) (5)

* Now we are done. The above tree is called a derivation tree, and it is typically drawn bottom-up.
Each leaf (top of the tree) must be an axiom.

¢ Drawing this derivation tree is essentially running a factorial program by hand. Each recursive case (an
instance of FACTIND) requires performing a recursive call, which is either another inductive case or a
base case. We label the result of the recursive call with a variable (like v). Once we hit a base case, we
can replace the variables with concrete comptued values. This is why in Equation (5) we substituted
computed quantities (numbers) for variables (v, vy, ...).

¢ Once again we are in a host semantics situation: how do we interpret the meaning of numbers and
operations like x in derivation trees like those in Equation (5)? Once again we will use Racket as our
host semantics: we will assume that these numbers and operations represent Racket numbers and
Racket operations.

3 Inference Rules for a Calculator Interpreter

e Now let’s use our new inference rule notation to describe a calculator interpreter
e We will define a function eval that evaluates each syntactic calculator term to a number

¢ Recall the syntax for a calculator language:

(struct (enum n))
(struct (eadd el e2))
(struct (emul el e2))

¢ We can define inference rules that describe the semantics of our calculator language:

(eval el) =1 (eval e2) = vy
(E-NUM) (E-ADD)
(eval (enum n)) =n (eval (eadd el e2)) = (+ U1 112)
(eval el) =n (eval e2) =wvo (E-MUL)
(eval (emul el e2)) = (xvy vg)

¢ Now we can draw derivation trees that describe evaluating our interpreter. For example, we can run
the program (+ (+ 1 2) 3):

(eval 1) =1 (eval 2) =1
(E-ADD) (E-Num)
(eval (+ 1 2)) = 3 (eval (3)) = 3
(E-ADD)
(eval (+ (+ 1 2) 3)) =6

Note: we will sometimes use surface syntax instead of abstract syntax, and elide the name of rules, to
make drawing derivation trees more concise.

* Notice how these rules visualize running the interpreter. For this reason, we will sometimes refer to
drawing a derivation tree for a program as running an interpreter by hand.

4 Substitution Semantics for Let Language

¢ The “evaluates to” inductive definition is so common that we will introduce special notation to de-
scribe it: the relation e || v says e evaluates to v. This means exactly the same thing as eval (e) =
v; it’s just easier (and common convention) to write it this way. This is sometimes called the natural
semantics of a programming language.

¢ Let’s use this notation to describe the semantics for the 1et language from last lecture:

(E-Num) —avor exbve g
(enum n) |n (eadd e; e2) | (4 v1 v2)
erd v es[z — v1] I vo

(E-LET)

(let x e1 e3) Jvs

¢ Recall that the syntax es[z — v1] substitutes the value v, for x in es.

e Let’s look at the rule for E-LET closely. What it says is: if e; evaluates to a value vy and e[z — v1]
evaluates to vy, then the expression (let x e; ey) evaluates to vo. Notice how there is a data
dependence between the two premises: the value v; is referred to by both the rule for evaluating e;
and ey. This is permitted: we just need to ensure that this value v; is the same in both locations.

* Now we can run a let program by hand. Let’s run the program (let x 10 (+ x 5)):

10 { 10 505
— (E-NuMm)
10 4 10 (+ x 5)[z+— 10] | 15
(let x 10 (+ x 5)) 415

(E-ADD)

(E-LET)

¢ We will handle errors differently in inference rule notation than in Racket. In our inference rule nota-
tion, it is considered an error if we get “stuck” (meaning, there is no rule to apply to make progress).

¢ For example, if we try to run the program that consists solely of an identifier x, then we get stuck
immediately because there is no rule to evaluate an identifier.

5 Environment-passing Semantics for Let Language

¢ The problem with substitution is that it is inefficient: we wouldn’t want to actually use substitution
to implement a programming language.

* A more practical solution to implementing the let language is to use an environment that maps
identifiers to values. The environment will store the current value for a particular variable, and when
an identifier is encountered during execution its value can be looked up in the environment.

¢ We will use an immutable hash table that maps strings (identifiers) to numbers as our environment.
Immutable hash tables have the follow usage in Racket:

> (define my-tbl (hash)) ;declare animmutable empty hash-table
> (define my-tbl-with-x (hash-set my-tbl "x" 10)) ;add x”with value 10
> (hash-has-key? my-tbl-with-x "x")

#t

> (hash-has-key? my-tbl "x") ;check if my-tbl contains "x”
#f

> (hash-ref my-tbl-with-x "x") ;/ook up ’x”in my—tbl-with—x
10

¢ Here is an example implementation in Racket of an environment-passing interpreter:

S5 type expr =

.| add of expr x expr

5| mul of expr x expr

5 | num of number

;| elet of string x expr x expr

(struct eadd (el e2) #:transparent)

(struct enum (n) #:transparent)

(struct elet (id assignment body) #:transparent)
(struct eident (id) #:transparent)

.., eval : expr — (string, number) hashtable — number
;. evaluates an expression e in environment env to a number
(define (eval e env)

(match e
[(enum n) n]
[(eadd el e2) (+ (eval el env) (eval e2 env))]

(
[(elet id assignment body)
(letx [(v—-assgn (eval assignment env))
(new—env (hash-set env id v-assgn))]
(eval body new—env))]
[(eident id)
(1f (hash-has-key? env id)
(hash-ref env id)
(error "unbound identifier"))]))

(check-equal? (eval (elet "x" (enum 10) (eident "x")) (hash)) 10)
(check-equal? (eval (elet "x" (enum 10)
(elet "x" (enum 20) (eident "x"))) (hash)) 20)

* Check: Why does the above implementation implement lexical scope? What property of the hash
tables ensures this?

6 Inference Rules for Environment-passing Semantics of Let Language

® Let’s get more practice with inference rules by using them to to describe the environment-passing
interpreter for the let language

e We will use the symbol p (pronounced “rho”) for our environment. Looking up an identifier = in p
is written p[z] (this corresponds to hash-ref). Immutably updating the table p to set z equal to v is
denoted p[r — v] (this corresponds to hash-set). Checking if p contains z is denoted = € p (this
corresponds with hash-has-key?).

¢ Now we can write down the environment-passing semantics of the 1et language in terms of inference
rules. These rules will define a function (e, p) || v, which is read “expression e with environment p
evaluates to value v”:

erd v ez va
((enum n),p) I n (E-NUM) (eadd ey e2) I (+ vy v2) (E-ADD)
z€p pla]=v
) b v (E-IDENT)

(e1,p) I v1 (e, plz > v1]) | vo
((let x ey eq),p) v

(E-LET)

¢ Notice: the above rules differ quite substantially from the substitution-based semantics for 1et. One
big difference is that we now have a rule for evaluating identifiers.

* Now we can draw derivation trees that visualize running our environment-passing interpreter.

e Example: Draw the derivation tree that corresponds to evaluating (let "x" 10 x) with the envi-
ronment initially empty (p = {}):

E-NUM z € {z — 10} {z — 10}[z] =10
10@10(-Num) (z,{z — 10}) § 10
((Let "x" 10 x),{}) V10

(E-IDENT)

(E-LET)

	Inference Rules
	Proving things using inference rules
	Inference Rules for a Calculator Interpreter
	Substitution Semantics for Let Language
	Environment-passing Semantics for Let Language
	Inference Rules for Environment-passing Semantics of Let Language

