
Lecture 5: The λ-calculus

Steven Holtzen
s.holtzen@northeastern.edu

CS4400/5400 Fall 2024

1 First-Class Functions

• In this lecture we will add an important new feature to our increasingly-rich mini-languages: first-class
functions (meaning, functions can be values).

• We’ve already seen an example of using functions as values in Racket; we declared these using the
lambda keyword. For example:

> (lambda (x) (+ x 1))
#<procedure>
> ((lambda (x) (+ x 1)) 10)
11

• A lambda term (lambda (x) e) has two syntactic components: an argument, which is an identifier
(in the above example, x is the argument); and a body (in the above example, the body is (+ x 1)).

• A lambda term is a function. In Racket we can call a lambda using the syntax (e1 e2) where e2 is
the argument to the function e1. The syntax (e1 e2) is called an application.

• Let’s give a semantics to these two syntactic forms. Lambdas are values, so they evaluate to them-
selves:

(lambda (x) e) ⇓ (lambda (x) e)
(E-LAM)

• A function application is a bit more involved. We will define it again in terms of substitution, similar
to let. To evaluate an application (e1 e2) we:

1. Evaluate e1 to a lambda term (lambda (x) ebody)

2. Evaluate e2 to some value v

3. Return the result of running ebody with v substituted for x

In inference rules:

e1 ⇓ (lambda (x) ebody) earg ⇓ varg ebody[x 7→ varg] ⇓ v

(e1 earg) ⇓ v
(E-APP)

1

s.holtzen@northeastern.edu

2 Let and Lambda

• Lambdas are a remarkably expressive tool for describing programming language features. For in-
stance, we can describe let using lambda.

• This isn’t too hard to see from a small example. Consider the following two equivalent programs:

> (let ([my-var 10]) my-var)
10
> ((lambda (my-var) my-var) 10)
10

• Observe that let is a special kind of lambda term: in general, we can always translate a let-binding (let
([id e1]) e2) into a special lambda application ((lambda (id) e2) e1).

• This is a small example of how language features can be represented using functions: we will see
many more

• It is often the case that one programming language feature can be represented by directly translating
it into a subset of the language that does not use that feature; we call this process desugaring.

• The above example illustrates how we can desugar let into lambda.

• Why do we also have let if we can simply express it using lambda? One reason is that the let form
helps make the program’s intent clearer: it is easy to identify the argument and the body, which helps
understand programs.

2

3 Substitution and Semantics for Lambda Terms

• Now let’s discuss how substitution is implemented for lambda terms. Similar to the let language,
our goal is to implement a lexical scoping strategy where an identifier always refers to its inner-most
binding in the abstract syntax tree.

• Racket’s implementation of lambda obeys lexical scope; let’s explore some example racket programs
to get a feel for how lexical scope works with lambda-terms.

> (define prog1 (let ([x 20])
(lambda (x) (+ x 1))))

> (prog1 1)
2

• Notice how in prog1, the inner-most x is the argument to the lambda, so it does not refer to the
constant 20.

• Let’s keep exploring more examples of how scope and substitution works in lambda terms. What
happens if we refer to a variable defined outside of a lambda term inside of that term?

> (define prog2
(let ([v 15])

(lambda (x) (+ x v))))
> (prog2 20)
35

• OK, so we have observed another scoping rule: lambda terms can refer to variables outside of their
body, as long as those variables aren’t shadowed by some argument to a lambda.

• Now for an interesting case: what happens if we return a lambda term that refers to some in-scope
variable? For instance:

> (define make-adder
(lambda (to-add)

(lambda (arg) (+ to-add arg))))
> (define add-10 (make-adder 10))
> (add-10 20)
30

• What’s going on in this example? To understand it, let’s break it down into the individual applica-
tions. First, we call (make-adder 10). What is this term? It is the result of substituting in 10 for
to-add in the make-adder body, i.e.:

(lambda (arg) (+ 10 arg))

• Notice how this local variable to-add escaped the scope in which it was initially defined: it was “cap-
tured” by the body of the lambda term when it was substituted in. This is why we don’t get an
“unbound identifier” error when we run this program even though to-add has gone out of scope
when we invoke add-10.

• Note: If you are ever wonder what a particular scoping rule is, plug the program into Racket and
see what it does! Come up with small examples that illustrate specific edge-cases you are wondering
about.

3

4 Syntax and Semantics of the λ-calculus

• Now let’s gain a deeper understanding of lambda terms by implementing them ourselves.

• As usual, to study a new feature, we make a very tiny language to study it in isolation. This language
will only have three syntactic terms: lambda terms, lambda application, and identifiers. This tiny
language is called the λ-calculus:

Listing 1: Syntax of λ-calculus
;;; type expr =
;;; | ident of string
;;; | lam of string × expr
;;; | app of expr × expr
(struct ident (s) #:transparent)
(struct lam (id body) #:transparent)
(struct app (e1 e2))

• We will use a convenient surface syntax for λ-calculus: the syntax λx.e denotes a lambda term with
argument x and body e, and the syntax (e1 e2) denotes application.

• Now we can give the big-step semantics for the λ-calculus:

λx.e ⇓ λx.e
(E-LAM)

e1 ⇓ λx.ebody earg ⇓ varg ebody[x 7→ varg] ⇓ v

(e1 earg) ⇓ v
(E-APP)

• This semantics is called the call-by-value semantics because the argument to each lambda term is run
before it is substituted.

• Note that, like the let-language, there is no inference rule for an unbound identifier (meaning, this
would be a runtime error).

• We call the set of unbound identifiers for a lambda term its free variables. For instance, the following
lambda term has a free variable y:

λx.(x y)

• λ-terms that have no free variables are called closed terms. Conversely, a λ-term with a free variable
is called an open term.

• Here is a small parser for the lambda calculus:

;;; parse−sexpr: sexpr → expr
;;; parsers an s−expression into a lambda expression
;;; expr ::= (lamda id <expr>) | id | (<expr> <expr>)
(define (parse-sexpr s)

(match s
[(list l id e)
(lam (symbol→string id) (parse-sexpr e))]

[(list e1 e2)
(app (parse-sexpr e1) (parse-sexpr e2))]

[id (ident (symbol→string id))]))

4

5 Substitution for λ-calculus

• Substitution for the λ-calculus is quite similar to the let-language

• We will make an assumption here to simplify the situation: we will assume that we are only evaluat-
ing closed terms.1 If we only evaluate closed terms, then we define substitution as follows:

x[y 7→ e] =

{
x if x ̸= y

e if x = y.
(1)

(e1 e2)[x 7→ e3] = (e1[x 7→ e3] e1[x 7→ e3]) (2)

(λ x.e)[y 7→ e] =

{
λx.e if x = y

λx.e[y 7→ e] otherwise.
(3)

• Now we can give a Racket implementation of this substitution:

;;; subst : expr → string → expr → expr
;;; performs the substitution e1[x |→ e2] with lexical scope
(define (subst e1 id e2)

(match e1
[(ident x)
(if (equal? x id) e2 (ident x))]

[(lam x body)
(if (equal? x id)

(lam x body) ; shadowing case; do nothing
(lam x (subst body id e2)) ; non−shadowing case
)]

[(app f arg)
(app (subst f id e2) (subst arg id e2))]))

1There are technical reasons for why we make this assumption based on capture avoidance. We won’t discuss them here since they
are not relevant to us yet; if you are curious, see Chapter 5 of Types and Programming Languages for a very detailed discussion.

5

6 Implementation of call-by-value substitution semantics for λ-calculus

• Now we are ready to implement the semantics for the λ-calculus using our above substitution func-
tion:

;;; eval : expr → expr
;;; evaluates a closed expression to a closed expression
(define (eval e)

(match e
[(ident x) (error "unbound ident")]
[(num n) (num n)]
[(lam id x) (lam id x)]
[(app e1 e2)
(match (eval e1)

[(lam id body)
(let× [(arg-v (eval e2))

(subst-body (subst body id arg-v))]
(eval subst-body))])]))

• We should test our implementation on some small examples to make sure it works:

> (eval (parse-sexpr ’((lambda x x) (lambda y y))))
(lam "y" (ident "y"))
> (eval (parse-sexpr ’((lambda x x) (lambda x x))))
(lam "x" (ident "x"))
; check for substitution under application
(check-equal? (subst app-lam "z" id-lam)

(parse-sexpr ’((lambda x x) (lambda y (lambda x x)))))
; check for substitution under application
(check-equal? (subst (parse-sexpr ’(x x)) "x" (parse-sexpr ’(lambda x (x x

))))
(parse-sexpr ’((lambda x (x x)) (lambda x (x x)))))

6

7 Running some λ-calculus programs

• Let’s run a few λ-calculus programs by hand and see what they do.

λx.x ⇓ λx.x (λy.y) ⇓ (λy.y) x[x 7→ (λy.y)] ⇓ (λy.y)
(E-LAM)

((λx.x) (λy.y)) ⇓ (λy.y)
E-APP

• Here is another example:

(λx.λy.y) ⇓ (λx.λy.y) (λz.z) ⇓ (λz.z) (λy.y)[x 7→ (λz.z)] ⇓ (λy.y)

((λx.λy.y) (λz.z)) ⇓ (λy.y)
E-APP

Pause: In English, what would you say this little program does? It “forgets its first argument”.

• In-class exercise: let’s extend our lambda calculus with numbers and addition; they behave in the
familiar ways. Let’s try running some programs involving those.

7

8 Programs that do not terminate: Ω

• It may seem at first that the λ-calculus is so simple and restricted that it cannot represent any useful
programs.

• This is not the case: in fact, the λ-calculus is a Turing-complete language! This means that the λ-calculus
is capable of representing all Racket programs, all C programs, etc. This is the so-called Church-Turing
thesis.

• We will see more of this in upcoming lectures, but here is a taste. We know it’s possible to write Racket
programs that don’t terminate. So, if the the λ-calculus is as expressive as Racket is, then it must also
be possible to write λ-calculus programs that don’t terminate. What is an example of such a program?

• You probably won’t come up with it yourself, it’s surprisingly tricky. Let’s build it in stages. First,
let’s define a lambda-term ω that performs a self-call: it calls its argument on itself, like so:

ω = λx.(x x)

• Clearly a program consisting solely of ω terminates right away: lambdas are values. However, what
happens if we call ω with itself as an argument?

Ω = (ω ω)

• We can plug this program into our λ-calculus implementation and see that indeed it does not termi-
nate:

> (define omega (parse-sexpr ’((lambda x (x x)) (lambda x (x x)))))
> (eval omega)
... runs forever

• What’s going on with this program? We can see more by attempting to run it by hand:

(λx.(x x)) ⇓ (λx.(x x)) (λx.(x x)) ⇓ (λx.(x x))

?

(x x)[x 7→ λx.(x x)] ⇓?
(λx.(x x)) (λx.(x x)) ⇓?

• Uh oh! Look carefully at the term (x x)[x 7→ (λx.(x x))]: this substitution is itself equal to Ω! So, in
order to evaluate Ω, we must evaluate Ω, so this tree will never terminate.

8

	First-Class Functions
	Let and Lambda
	Substitution and Semantics for Lambda Terms
	Syntax and Semantics of the -calculus
	Substitution for -calculus
	Implementation of call-by-value substitution semantics for -calculus
	Running some -calculus programs
	Programs that do not terminate:

