Lecture 9: Let-rec and Recursion

Steven Holtzen
s.holtzen@northeastern.edu

CS54400/5400 Fall 2024

1 Some Common Inference Rules and Derivation Tree Mistakes

® Recall the big-step semantics for the call-by-value A-calculus, extended with numbers (denoted syn-
tactically by n):

Az.e | Az.e (E-Lawm) nln (E-Num)

er |)\m'ebody Carg (8 Varg €body [55 = Uarg} U

v
(1 €ag) U 0 (E-APP)

¢ Mistake #1: Scope Be careful when performing substitution. The following substitution is wrong:
(Az.x)[z — 10] =7 A\z.10
How can we tell? There’s several ways:

— First, this violates our lexical scoping rules. Identifiers always refer to their nearest binding.

— Second, this doesn’t match our specification of the substitution function. We can see this in
several ways. One way is to go look at the definition we gave in Section 5 of Lecture 5 of the
course notes. Another way is to load up the A-calculus interpreter into DrRacket and try calling

subst:
> (subst (lam "x" (ident "x")) "x" (lam "y" (ident "y")))
(lam "x" (ident "x"))

* Mistake #2: Simplifying under lambdas This was a very common mistake on the homework, and
several people asked about it on Piazza. The following is not true:

(Az.((Az.z) 10)) §* A2.10

Why is this the case? We discussed this in some detail in Section 3 of Lecture 6, I encourage you to go
there and see the reasoning.

¢ Helpful hints:

— Remember that the notation e || v corresponds to calling the A-calculus interpreter (eval e),
and e; [z — e3] corresponds to calling the substitution function (subst e; x e3) that we pro-
vided you in class. If you are ever wondering what these two do, go run the code.

— Derivation trees describe what your interpreter does. If your interpreter doesn’t do it, then your
derivation tree shouldn’t do it.

s.holtzen@northeastern.edu

2 Recursion and Scope

In class we’ve seen plenty of examples of recursive functions: for instance, all of your interpreters
have been recursive functions!]

In Racket we can easily implement recursive functions. For example here is the factorial function:

(define (fact n)
(if (equal? n 0)
1
(* n (fact (- n 1)))))

The reason this definition works is that the name of the function (fact) is in scope in the body of the
function’s definition. This lets the function call itself.

Our goal is to be able to define recursive functions like fact in the A-calculus. However, the A-
calculus doesn’t give us a way to define names like Racket, so this seems super tricky!

Continuing in Racket, we might start like this attempt to write a factorial function without using the
define keyword:

(define almost—-factorial (lambda (n)
(if (equal? n 0)
1
(» n (self (- n 1))))))

Clearly this is not a valid Racket program, and indeed it will raise an error if you try to call it using
the Racket REPL: it will say that this magical “self” term is not defined.

I This progression presenting the Y-combinator was heavily inspired by this blogpost https://mvanier.livejournal.com/
2897 . html which was heavily inspired by Eli Barzilay.

https://mvanier.livejournal.com/2897.html
https://mvanier.livejournal.com/2897.html

3 Unfolding Recursion

What should we put in this almost-factorial function for self, if we can’t put a self-referencing
call to almost-factorial there?

There’s a simple approach that obviously won’t work in general, but seems like it might help us: we
can define another copy of almost-factorial, and call that one:

(define factorial (lambda (n)
(if (equal? n 0)
1
(» n (self (—n 1)))))))

(define almost-factorial (lambda (n)
(if (equal? n 0)
1
(» n (factorial (— n 1))))))

Of course, this doesn’t really solve our problem: now we’re left with another function called
factorial, that again has to refer to itself! But, seem to have made a bit of progress: at least the
almost-factorial function is now well-defined.

In general, any time I have a recursive function, I can split it up into (1) a non-recursive function that
does one step of the recursion, and (2) a recursive function that does the rest of the work. This process
is called a one step unfolding of recursion; in the above example, we generate a 1-step unfolding of
almost-factorial.

Here is the algorithm for unfolding a recursive function £, which is quite simple:

— Generate a new function definition f-fresh by copy-and-pasting the definition of f.

— Find all calls to self in £ and replace them with calls to f-fresh.

If you know that a recursive function has a particular maximum number of recursive calls, then you
can unroll it to that number of recursive calls and it will work!

Now you can imagine that, if we can do unlimited unfoldings, we would eventually be able to define an
arbitrarily recursive function. This idea of unlimited unfoldings will be critical.

4 Letrec

* Racket has the following syntax for let that lets us define a recursive factorial function:

> (letrec [(fact (lambda (n) (if (equal? n 0)
1
(» n (fact (= n 1))))))]
(fact 4))
24

¢ This letrec construct behaves very differently from our usual version of let! First, let’s look at
its scoping rules. We see that the identifier fact is in-scope in its binding (i.e., the lambda we are
defining can refer to fact)! This is very different from let: the following program will fail with an
unbound identifier error:

> (let [(fact (lambda (n) (if (equal? n 0)
1
(» n (fact (- n 1))))))]
(fact 4))

¢ As usual in this class, let’s try to implement a mini-language that has support for let rec to under-
stand how it is implemented. Our goal is for it to behave like Racket’s letrec.

* As usual, we want to implement letrec with substitution. But what do we substitute? We need to
make sure we don’t end up with an unbound identifier error after substituting.

Unfolding letrec

Let’s try to do one step of unfolding letrec
Here is our strategy:

— Replace letrec with let, because we know how let is supposed to work using substitution.
— Anywhere we have a recursive call inside the assignment of the letrec, replace that with a
letrec.
For example, we can unfold the factorial letrec as:

(letrec [(fact (lambda (n) (if (equal? n 0)
1
(» n (fact (- n 1))))))]
(fact 4))

-— unfolding 1 step —-—

(let [(fact (lambda (n) (if (equal? n 0)

1
(*» n ((letrec [(fact (lambda (n)
(if (equal? n 0)
1
(» n (fact (= n 1)))))
)]
fact)
(=n 1))))))l

(fact 4))

(matching up parenthesis on the above example is pretty tricky! It might help to copy/paste it into
Racket to see)

Notice: we have a few copy/pasted copies of the body of the factorial function. But, we got rid of one
level of letrec

Notice: when unfolding, we replaced the self-call to fact with another instance of letrec:

(letrec [(fact (lambda (n)
(1f (equal? n 0)
1
(» n (fact (= n 1))))))]
fact)

This letrec simply defines the fact function and then returns it.

6 Implementing letrec

e Now hopefully you can see a way to implement letrec. The idea is to unfold one step whenever
you encounter a let-rec during execution. The key is to unfold only when needed: this keeps us from
infinitely unfolding forever.

¢ We can define the AST for our tiny letrec language:

(struct eident (s) #:transparent)

(struct eletrec (f fun body) #:transparent)
(struct elet (id assgn body) #:transparent)
(struct elam (id body) #:transparent)
(struct eapp (el e2) #:transparent)

¢ In the above syntax, we require that the binding fun of a letrecisa lambda

® Then, we can define an evaluator. The evaluator is the same as all the other interpreters except for the
rule for letrec:

(define (interp e)

(match e
[(eident x) (error x)]
[(elam id x) (elam id x)]

[(eletrec f fun body)

;run (elet f fun[f |— (eletrec f lamarg lambody f)] body)

(interp (elet f (subst fun f (eletrec f fun (eident £f))) body))]
.))

* As always, we can also describe this using inference rules as well:

(elet f fun([x +— (eletrec f fun (eident f))] body) | v

(E-LETREC)
(eletrec f fun body) | v

¢ We've provided an implementation for this 1et rec language with everything you need to implement
the factorial function on the course webpage. See for yourself that it works!

7 Recursion in the)\-calculus

¢ Note: This is a pretty advanced section. It won’t be required for or built on further in the course, and
we may not have time to get to it in lecture.

e We've discussed in class a few times about how the A-calculus is a Turing-complete language and can
represent all Racket programs.

* S0, how is it possible to represent programs involving letrec in the A-calculus?

¢ Put differently: how can we write the factorial function in Racket without needing to use define or
letrec (i.e., only using lambda, if, and numeric operations)?

* We saw that the key insight to implementing letrec is to unfold the recursive function one level
whenever it is called. So, we need to come up with a special A\-term that unfolds one level of recursion
whenever it is called.

¢ First-things-first: we need to make this magical A\-term available to our factorial function. The only
way to do that is to make the function take in an extra argument called self:

> (define almost-factorial (lambda (self)
(lambda (n)
(if (equal? n 0)
1
(» n (self (- n 1)))))))

¢ Now, where does this magical self parameter come from? It should be a function that, when called,
generates a once-unfolded version of almost-factorial.

¢ Coming up with this special function took a long time; it was discovered by Haskell Curry. It is called
the Y-Combinator, and it looks like this:

(define Y
(lambda (f)
((lambda (x) (f (lambda (y) ((x x) y))))
(lambda (x) (f (lambda (y) ((x x) v)))))))

¢ It looks super weird. Before we unpack it, let’s see how it’s used:

> (define factorial (Y almost-factorial))
(factorial 4)
24

* Wow! Let’s take stock of what’s happening: we’ve implemented the recursive factorial function with-
out using letrec or explicit recursion! But how?

8 Unfolding Y

o First, let’s see what happens when we call Y with the argument almost-factorial.

(Y almost—factorial)
= ((lambda (x) (f (lambda (y) ((x x) vy))))

(lambda (x) (f (lambda (y) ((x x) y)))))I[f |— almost-factorial]
= ((lambda (x) (almost-factorial (lambda (y) ((x x) vy))))

(lambda (x) (almost-factorial (lambda (y) ((x x) y)))))

Notice, this is a function call, so we keep evaluating. To keep our

= (almost-factorial (lambda (y) ((x x) y)))

[x |—= (lambda (x) (almost-factorial (lambda (y) ((x x) v))))]
= (almost-factorial (lambda (y)
(((lambda (x) (almost-factorial (lambda (y) ((x x) vy))))
(lambda (x) (
(

almost-factorial (lambda (y) ((x x) v))))) vy)))
))

(almost-factorial (lambda (y) (Y almost-factorial) vy
* Bingo! Remember, the first argument to almost-factorial is self. So, the function call (Y
almost-factorial) evaluates to almost-factorial with self replaced by
(lambda (y) (Y almost-factorial) vy); thisisexactly 1-level deep of recursive unfolding.

	Some Common Inference Rules and Derivation Tree Mistakes
	Recursion and Scope
	Unfolding Recursion
	Letrec
	Unfolding letrec
	Implementing letrec
	Recursion in the -calculus
	Unfolding Y

