
Lecture 9: Let-rec and Recursion

Steven Holtzen
s.holtzen@northeastern.edu

CS4400/5400 Fall 2024

1 Some Common Inference Rules and Derivation Tree Mistakes

• Recall the big-step semantics for the call-by-value λ-calculus, extended with numbers (denoted syn-
tactically by n):

λx.e ⇓ λx.e
(E-LAM)

n ⇓ n
(E-NUM)

e1 ⇓ λx.ebody earg ⇓ varg ebody[x 7→ varg] ⇓ v

(e1 earg) ⇓ v
(E-APP)

• Mistake #1: Scope Be careful when performing substitution. The following substitution is wrong:

(λx.x)[x 7→ 10] =? λx.10

How can we tell? There’s several ways:

– First, this violates our lexical scoping rules. Identifiers always refer to their nearest binding.

– Second, this doesn’t match our specification of the substitution function. We can see this in
several ways. One way is to go look at the definition we gave in Section 5 of Lecture 5 of the
course notes. Another way is to load up the λ-calculus interpreter into DrRacket and try calling
subst:

> (subst (lam "x" (ident "x")) "x" (lam "y" (ident "y")))
(lam "x" (ident "x"))

• Mistake #2: Simplifying under lambdas This was a very common mistake on the homework, and
several people asked about it on Piazza. The following is not true:

(λx.((λx.x) 10)) ⇓? λx.10

Why is this the case? We discussed this in some detail in Section 3 of Lecture 6, I encourage you to go
there and see the reasoning.

• Helpful hints:

– Remember that the notation e ⇓ v corresponds to calling the λ-calculus interpreter (eval e),
and e1[x 7→ e2] corresponds to calling the substitution function (subst e1 x e2) that we pro-
vided you in class. If you are ever wondering what these two do, go run the code.

– Derivation trees describe what your interpreter does. If your interpreter doesn’t do it, then your
derivation tree shouldn’t do it.

1

s.holtzen@northeastern.edu

2 Recursion and Scope

• In class we’ve seen plenty of examples of recursive functions: for instance, all of your interpreters
have been recursive functions.1

• In Racket we can easily implement recursive functions. For example here is the factorial function:

(define (fact n)
(if (equal? n 0)

1
(* n (fact (- n 1)))))

• The reason this definition works is that the name of the function (fact) is in scope in the body of the
function’s definition. This lets the function call itself.

• Our goal is to be able to define recursive functions like fact in the λ-calculus. However, the λ-
calculus doesn’t give us a way to define names like Racket, so this seems super tricky!

• Continuing in Racket, we might start like this attempt to write a factorial function without using the
define keyword:

(define almost-factorial (lambda (n)
(if (equal? n 0)

1
(* n (self (- n 1))))))

• Clearly this is not a valid Racket program, and indeed it will raise an error if you try to call it using
the Racket REPL: it will say that this magical “self” term is not defined.

1This progression presenting the Y-combinator was heavily inspired by this blogpost https://mvanier.livejournal.com/
2897.html which was heavily inspired by Eli Barzilay.

2

https://mvanier.livejournal.com/2897.html
https://mvanier.livejournal.com/2897.html

3 Unfolding Recursion

• What should we put in this almost-factorial function for self, if we can’t put a self-referencing
call to almost-factorial there?

• There’s a simple approach that obviously won’t work in general, but seems like it might help us: we
can define another copy of almost-factorial, and call that one:

(define factorial (lambda (n)
(if (equal? n 0)

1
(* n (self (- n 1)))))))

(define almost-factorial (lambda (n)
(if (equal? n 0)

1
(* n (factorial (- n 1))))))

• Of course, this doesn’t really solve our problem: now we’re left with another function called
factorial, that again has to refer to itself! But, seem to have made a bit of progress: at least the
almost-factorial function is now well-defined.

• In general, any time I have a recursive function, I can split it up into (1) a non-recursive function that
does one step of the recursion, and (2) a recursive function that does the rest of the work. This process
is called a one step unfolding of recursion; in the above example, we generate a 1-step unfolding of
almost-factorial.

• Here is the algorithm for unfolding a recursive function f, which is quite simple:

– Generate a new function definition f-fresh by copy-and-pasting the definition of f.

– Find all calls to self in f and replace them with calls to f-fresh.

• If you know that a recursive function has a particular maximum number of recursive calls, then you
can unroll it to that number of recursive calls and it will work!

• Now you can imagine that, if we can do unlimited unfoldings, we would eventually be able to define an
arbitrarily recursive function. This idea of unlimited unfoldings will be critical.

3

4 Letrec

• Racket has the following syntax for let that lets us define a recursive factorial function:

> (letrec [(fact (lambda (n) (if (equal? n 0)
1
(* n (fact (- n 1))))))]

(fact 4))
24

• This letrec construct behaves very differently from our usual version of let! First, let’s look at
its scoping rules. We see that the identifier fact is in-scope in its binding (i.e., the lambda we are
defining can refer to fact)! This is very different from let: the following program will fail with an
unbound identifier error:

> (let [(fact (lambda (n) (if (equal? n 0)
1
(* n (fact (- n 1))))))]

(fact 4))

• As usual in this class, let’s try to implement a mini-language that has support for letrec to under-
stand how it is implemented. Our goal is for it to behave like Racket’s letrec.

• As usual, we want to implement letrec with substitution. But what do we substitute? We need to
make sure we don’t end up with an unbound identifier error after substituting.

4

5 Unfolding letrec

• Let’s try to do one step of unfolding letrec

• Here is our strategy:

– Replace letrec with let, because we know how let is supposed to work using substitution.

– Anywhere we have a recursive call inside the assignment of the letrec, replace that with a
letrec.

• For example, we can unfold the factorial letrec as:

(letrec [(fact (lambda (n) (if (equal? n 0)
1
(* n (fact (- n 1))))))]

(fact 4))

-- unfolding 1 step -→

(let [(fact (lambda (n) (if (equal? n 0)
1
(* n ((letrec [(fact (lambda (n)

(if (equal? n 0)
1
(* n (fact (- n 1)))))

)]
fact)

(- n 1))))))]
(fact 4))

• (matching up parenthesis on the above example is pretty tricky! It might help to copy/paste it into
Racket to see)

• Notice: we have a few copy/pasted copies of the body of the factorial function. But, we got rid of one
level of letrec!

• Notice: when unfolding, we replaced the self-call to fact with another instance of letrec:

(letrec [(fact (lambda (n)
(if (equal? n 0)

1
(* n (fact (- n 1))))))]

fact)

• This letrec simply defines the fact function and then returns it.

5

6 Implementing letrec

• Now hopefully you can see a way to implement letrec. The idea is to unfold one step whenever
you encounter a let-rec during execution. The key is to unfold only when needed: this keeps us from
infinitely unfolding forever.

• We can define the AST for our tiny letrec language:

(struct eident (s) #:transparent)
(struct eletrec (f fun body) #:transparent)
(struct elet (id assgn body) #:transparent)
(struct elam (id body) #:transparent)
(struct eapp (e1 e2) #:transparent)

• In the above syntax, we require that the binding fun of a letrec is a lambda

• Then, we can define an evaluator. The evaluator is the same as all the other interpreters except for the
rule for letrec:

(define (interp e)
(match e

[(eident x) (error x)]
[(elam id x) (elam id x)]
...
[(eletrec f fun body)
; run (elet f fun[f |→ (eletrec f lamarg lambody f)] body)
(interp (elet f (subst fun f (eletrec f fun (eident f))) body))]
...))

• As always, we can also describe this using inference rules as well:

(elet f fun[x 7→ (eletrec f fun (eident f))] body) ⇓ v

(eletrec f fun body) ⇓ v
(E-LETREC)

• We’ve provided an implementation for this letrec language with everything you need to implement
the factorial function on the course webpage. See for yourself that it works!

6

7 Recursion in the λ-calculus

• Note: This is a pretty advanced section. It won’t be required for or built on further in the course, and
we may not have time to get to it in lecture.

• We’ve discussed in class a few times about how the λ-calculus is a Turing-complete language and can
represent all Racket programs.

• So, how is it possible to represent programs involving letrec in the λ-calculus?

• Put differently: how can we write the factorial function in Racket without needing to use define or
letrec (i.e., only using lambda, if, and numeric operations)?

• We saw that the key insight to implementing letrec is to unfold the recursive function one level
whenever it is called. So, we need to come up with a special λ-term that unfolds one level of recursion
whenever it is called.

• First-things-first: we need to make this magical λ-term available to our factorial function. The only
way to do that is to make the function take in an extra argument called self:

> (define almost-factorial (lambda (self)
(lambda (n)
(if (equal? n 0)

1
(* n (self (- n 1)))))))

• Now, where does this magical self parameter come from? It should be a function that, when called,
generates a once-unfolded version of almost-factorial.

• Coming up with this special function took a long time; it was discovered by Haskell Curry. It is called
the Y-Combinator, and it looks like this:

(define Y
(lambda (f)

((lambda (x) (f (lambda (y) ((x x) y))))
(lambda (x) (f (lambda (y) ((x x) y)))))))

• It looks super weird. Before we unpack it, let’s see how it’s used:

> (define factorial (Y almost-factorial))
(factorial 4)
24

• Wow! Let’s take stock of what’s happening: we’ve implemented the recursive factorial function with-
out using letrec or explicit recursion! But how?

7

8 Unfolding Y

• First, let’s see what happens when we call Y with the argument almost-factorial.

(Y almost-factorial)
= ((lambda (x) (f (lambda (y) ((x x) y))))

(lambda (x) (f (lambda (y) ((x x) y)))))[f |→ almost-factorial]
= ((lambda (x) (almost-factorial (lambda (y) ((x x) y))))

(lambda (x) (almost-factorial (lambda (y) ((x x) y)))))

Notice, this is a function call, so we keep evaluating. To keep our

= (almost-factorial (lambda (y) ((x x) y)))
[x |→ (lambda (x) (almost-factorial (lambda (y) ((x x) y))))]

= (almost-factorial (lambda (y)
(((lambda (x) (almost-factorial (lambda (y) ((x x) y))))
(lambda (x) (almost-factorial (lambda (y) ((x x) y))))) y)))

= (almost-factorial (lambda (y) (Y almost-factorial) y))

• Bingo! Remember, the first argument to almost-factorial is self. So, the function call (Y
almost-factorial) evaluates to almost-factorial with self replaced by
(lambda (y) (Y almost-factorial) y); this is exactly 1-level deep of recursive unfolding.

8

	Some Common Inference Rules and Derivation Tree Mistakes
	Recursion and Scope
	Unfolding Recursion
	Letrec
	Unfolding letrec
	Implementing letrec
	Recursion in the -calculus
	Unfolding Y

