CS4400/5400
Programming Languages

Spring 2024
Instructor: Steven Holtzen
s.holtzen@northeastern.edu

‘ \ ‘ Northeastern University
Khoury College of Computer

and Information Sciences

mailto:s.holtzen@northeastern.edu

Final logistics

* Quiz tomorrow, homework due tonight

* Final grades should be done by next Wednesday
* Please complete trace evaluation

* Thanks for being the first class ©

Questions

Why are new languages being made today?

Why are there so many programming
languages?

Which language should | learn? Should | use?

Are some languages worse than others?
Better? How can | compare them?

What distinguishes one language from
another?

How are new languages made?

Why study programming languages?

* Be a more effective programmer
* How to choose languages for your problems
* How to design and implement languages when needed

* Become equipped to learn new languages quickly

* Be prepared for an evolving world
* New languages are showing up all the time

* ¢ Enjoy an aesthetic journey through this elegant field

Big course themes and topics

Language implementation
Type systems and type safety

Compilers
Growing languages

Control flow
The lambda calculus

Memory safety

Runtime/dynamic safety

What is a “programming language”?

“A programming language is a
system of notation for writing
computer programs.”

https://en.wikipedia.org/wiki/Programming language
Accessed Friday, January 5

https://en.wikipedia.org/wiki/Programming_language

This course evolved as it went
Our original schedule

CS4400 Spring'24 Schedule : Sheet1

Module Date Lecture title Topics Resources
Introduction to Plait and - Why programming languages?
Functional Programming Monday Jan 8 Introduction and course overview - Afirst look at Racket/Plait https://docs.racket-lang.org/plait/Tutorial.html Sections 1.1 -- 1.5

- Solving problems functionally and recursively
- How to write tests in Plait
Wednesday Jan 10 Programming in Racket and Plait - How Plait's type system works https://docs.racket-lang.org/plait/Tutorial.html Sections 1.1 -- 1.8

Monday Jan 15 No Class --- Martin Luther King Jr. Day
Wednesday Jan 17 No Class --- Steven Traveling for POPL - Optional in-class workshop on Plait
- Abstract syntax trees

Building a SMoL - A simple calculator language PLAIl pg. 17 -- 27
Interpreter Monday Jan 22 Abstract Syntax - Interpreting a language by hand See https://www.plai.org/3/2/PLAI%20Version%203.2.2%20printing.pdf
- Implementing and testing the evaluator
Wednesday Jan 24 Evaluation - Parsing and s-expressions PLAI pg. 28 -- 37

- Extending the syntax with "if"
- Design space of "if’

Monday Jan 29 Conditionals - Adding Booleans, the "Value® type PLAI pg. 37 -- 47
- The ‘let’ syntax
- Scope
Wednesday Jan 31 Local binding - An evaluator for “let’ PLAI pg. 47 -- 57

- Syntax for functions
- Adding functions to the “Value' type
Monday Feb 5 First-class functions - Evaluating functions PLAI pg. 58 -- 69
- Desugaring
- An example: Strict If
- define-syntax
Wednesday Feb 7 Growing SMoL: Macros - Macro stepping in DrRacket PLAI pg. 71 -- 84
- The "standard model" of objects
- State
Monday Feb 12 Objects | - Access control PLAI pg. 85 -- 95

This course evolved as it went
Our original schedule

Types Wednesday Feb 14

Monday Feb 19

Wednesday Feb 21
Monday Feb 26
Wednesday Feb 28
Monday Mar 4
Wednesday Mar 6
Monday Mar 11
Wednesday Mar 13
Monday Mar 18

Wednesday Mar 20

Paradigms Monday Mar 25

Wednesday Mar 27

Monday Apr 1
Wednesday Apr 3

Monday Apr 8
Wednesday Apr 10
Monday Apr 15
Wednesday Apr 17

Objects Il

Introduction to types

Typing functions

The Simply Typed Lambda Calculus

Safety and soundness
No Class -- Spring Break
No Class -- Spring Break

Type inference
Algebraic datatypes and pairs
Subtyping

Gradual typing

Logic Programming |
Logic Programming Il

Laziness |
Laziness Il

Effects |

Effects Il

No Class -- Patriot's day
Slack day

- Extending objects: mixins, traits

- What are types?

- A simple type checker

- How to read and write typing judgments
- The typing rule for functions

- Assume-guarantee reasoning

- Making a typechecker

- Handling recursion

- Syntax and a type checker
- The Omega term and normalization

- What is type safety, why do you want it
- Enforcing type safety
- Type safety for simply-typed lambda calculus

- Basic goals of type inference

- Hindley-Milner

- Complexity of type inference

- Typechecking algebraic datatypes and pairs
- Proofs and programs: Curry-Howard

- Adding subtyping to typing judgments

- Applications: information flow analysis

- TypeScript, typed Python, Typed Racket

- Programming with relations
- Unification
- A simple type checker

- Evaluation schemes: eager, lazy, call-by-need,
call by name

- Consequences of evaluation schemes

- A lazy evaluator

- Programming in lazy languages

- Modeling state and mutation

- A taste of Haskell

- Effects in Racket

- Effect handlers

PLAI pg.

PLAI pg.

PLAI pg.

PLAI pg.

PLAI pg.
PLAI pg.
PLAI pg.
PLAI pg.

PLAI pg.
PLAI pg.

97 -- 106

109 -- 122
123 -- 132
133 -- 144
145 -- 149
150 -- 153
165 -- 170
170 -- 176
178 - 184
193 -- 202

Why the changes?

 Some minor changes in pacing based on how fast
things were going

In response to:
Expressed interest from students in learning Rust
Government announcements on memory safety

* Big topic shifts:

Ongoing research projects involving Rust becoming
more interesting to me

* Memory safety My own enjoyment of Rust

* Continuations In response to:

e Research directions involving continuations
* Emerging programming language patterns (effect

handlers, co-routines, etc.) involving continuations

Module 1: Growing a language

* Tiny language: calculator
» Studied scope, syntax, semantics

 Somehow even tinier language: A-calculus
e :=(Ax.e)|(ee)|x

* Implementation with substitution and with
environments

Module 1: Growing a language

* How big can we make the lambda calculus?

Boolean language
W Lambda calculus

If, true, false

Church
Encoding

Module 1: Growing a language

* How big can we make the lambda calculus?

W Lambda calculus

Church
Encoding

Any Turing machine

Module 1: Growing a language

* How do we make loopy programs?

Q= Az.(z x)) A\z.(z x))

e Want more? Check out the Y-combinator

* A great blog post:
https://matt.might.net/articles/python-church-y-
combinator/

https://matt.might.net/articles/python-church-y-combinator/
https://matt.might.net/articles/python-church-y-combinator/

Bonus content: big-step semantics

* Remember type judgments? We can use those to
describe how to run programs too

e:=(e+e)|num|let x = e; in ey | x

num | num

er v ex v er o1 ealz = 0] b vs

(e1 4+ e2) I v1 + v9 let x = e; in eg | v

Other aspects of semantics

* Small-step semantics: describe a program’s
behavior by the sequence of steps it takes to
evaluate

* Denotational semantics: describe a program’s
behavior by associating it with a mathematical
object (like a set)

h«na
(o]
- Semar

=
T | emantics o

Module 2: Types

* We studied how to design systems to prevent
runtime errors

/ \ /...design a type system that\

Given an interpreter... prevents runtime errors in that
interpreter

e = (A\x.e)|(ee)|x

. NS /

Other aspects of types we didn’t cover

 Existential and universal types

* Recursive types

* Dependent types

* Connection between types and logic

* Modules

* Calculus of constructions and formal verification

Propositions as types teaser

https://cacm.acm.org/research/propositions-as-types/

Figure 4. Simplifying a proof.

[B& AF [B& AF
&,

A&B B A

(B&A)D (A& B) B&A

A&B

Phil Wadler

Figure 8. Evaluating a program.

[z:B x A [z: B x AF?
x-Ey x-E;
mZ:A mz:B
x-I
(mpz,m z):AXB y:B Xx:A
—-17 I
Az.(myz,m 2): (BxA)— (AxB) (v.x):BxA

(Az. (mpz,m 2)) (Y, X): Ax B

I

y:B x:A y:B Xx:A

—x-1 —— x-1I
(y.x):BxA (v.x):Bx A

— x-E — x-E1
(¥, X) 1 A m (y,X): B

x-I

(my (.x),my (7,x)) : A x B

x:A y:B
— x-I
(x.y):AxB

https://cacm.acm.org/research/propositions-as-types/

e

Formal verification

https://softwarefoundations.cis.upenn.edu/ —
Coq proof assistant

° There iS a Whole SOFTWARE FOUNDATIONS
industry of proving O~ g e,

of each volume, including the exercises, is literally a "proof script" for the Coq proof assistant.

L]
The exposition is intended for a broad range of readers, from advanced undergraduates to PhD students and researchers. No
specific background in logic or programming languages is assumed, though a degree of mathematical maturity is helpful. A
one-semester course can expect to cover Logical ions plus most of ing Language ions or Verified

Functional Algorithms, or selections from both.

programming

Logical Foundations is the entry-point to the gl
he theory of programming languages,

series. It covers functional programming,
a I l l l a e O O S basic of logic, isted i e , Hoare
theorem proving, and Coq. logic, and static type systems.
A

\ Beripmin . pierce |

BenjaminiC. pierce’

* chris Gasinghino

 After this class, you
are ready to explore
this topic

Module 3: Memory safety

 Memory safety errors are pervasive and terrible

Heartbleed is a security bug in some outdated versions of the OpenSSL cryptography library, which is a
widely used implementation of the Transport Layer Security (TLS) protocol. It was introduced into the
software in 2012 and publicly disclosed in April 2014. Heartbleed could be exploited regardless of whether
the vulnerable OpenSSL instance is running as a TLS server or client. It resulted from improper input
validation (due to a missing bounds check) in the implementation of the TLS heartbeat extension.®! Thus,
the bug's name derived from heartbeat.®! The vulnerability was classified as a buffer over-read,!’ a
situation where more data can be read than should be allowed. 8!

Module 3: Memory safety

* A language-design approach: we can make
memory-safety errors impossible by preventing
low-level memory manipulation

L4 OCaml
")

* Problem: performance!

Studied how to
compile these
languages into

memory-unsafe
languages

Module 3: Memory safety

* A trend in modern language design: memory safety
+ performance

Oxidizing OCaml: Locality
MAY 26, 2023 | 15 MIN READ

A language empowering everyone
to build reliable and efficient software.

https://blog.janestreet.com/oxidizing-ocaml-locality/

Module 4: Control & continuations

* Theme: how do we implement interpreters for
languages with interesting control-flow?

* Saw how continuations give us a way to implement
control-flow constructs like exception handling

* See how continuation-passing style lets us compile
languages with interesting control-flow into simpler
languages

* Forms the foundations for compiling functional
programs

* The ideas come up in interesting places: call-backs
in JavaScript, co-routines and concurrent
programming, optimizing recursive programs

Resources

e Software foundations:
https://softwarefoundatio

ns.cis.upenn.edu/

* Programming language
foundations in Agda
https://plfa.github.io/

* Types and Programming
Languages by Ben Pierce

* Practical Foundations for
Programming Languages
by Bob Harper

Types and
Programming
Languages

ROBERTHARPER -

Practical Foundations for
PROGRAMMING
LANGUAGES

i
¥

R S

https://softwarefoundations.cis.upenn.edu/
https://softwarefoundations.cis.upenn.edu/
https://plfa.github.io/

Other courses at Northeastern

 Compilers (CS4410)
e https://course.ccs.neu.edu/cs4410sp24

* Intensive programming languages (IPPL),
CS7400

e https://www.khoury.northeastern.edu/home/amal/
course/7400-s15/

e Graduate seminars

e CS7470/CS7480 (here’s mine:
https://neuppl.github.io/CS7470-Fall23/)

https://course.ccs.neu.edu/cs4410sp24
https://www.khoury.northeastern.edu/home/amal/course/7400-s15/
https://www.khoury.northeastern.edu/home/amal/course/7400-s15/
https://neuppl.github.io/CS7470-Fall23/

Research in PL at
Northeastern

And beyond

Research overview at Northeastern
Amal Ahmed

* Research themes: broadly in programming
| a n g u a ge t h e O ry Gradually Typed Languages Should be Vigilant!.

Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed.
Proc. ACM Program. Lang. 8, OOPSLAA1, Article 125, 29 pages, Apr 2024.

L] L] L]
[] L t b I t Semantic Encapsulation Using Linking Types.
a n u a e I n e ro e ra I I Daniel Patterson, Andrew Wagner, and Amal Ahmed.
In ACM SIGPLAN International Workshop on Type-Driven Development (TyDe '23), Seattle, Washington,
* Type systems
y p y Lilac: A Modal Separation Logic for Conditional Probability.
R . John M. Li, Amal Ahmed, and Steven Holtzen.
Proc. ACM Program. Lang. 7(PLDI):148-171 (2023).
* Safe compilation
ANF Preserves Dependent Types up to Extensional Equality.
Paulette Koronkevich, Ramon Rakow, Amal Ahmed, and William J. Bowman.

Y R t WAS M Journal of Functional Programming, 32, E22, 2022.
ust,

Semantic Soundness for Language Interoperability.

Daniel Patterson, Noble Mushtak, Andrew Wagner, Amal Ahmed.

In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'22), San Diego,
California, June 2022.

Gradual Type Theory.
Max S. New, Daniel R. Licata, Amal Ahmed.

L L]
° LO 9] kl N g to recru |t St u d e nts Journal of Functional Programming, 31, E21, 2021,
Graduality and Parametricity: Together Again for the First Time.
° . Max S. New, Dustin Jamner, and Amal Ahmed.
W O r I n O n W e - a S S e l I I In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL '20), New Orleans, Louisiana,
. January 2020.
t h t ° | d t . I Technical appendix, November 2019.

projects are available

Research overview at

Northeastern
Arjun Guha

» Research themes: currently, language models
for code

Arjun Guha Arjun Guha

Northeastern University Northeastern University
Verified email at northeastern.edu - Homepage Verified email at northeastern.edu - Homepage
Programming Languages Security Systems Programming Languages Security Systems
TITLE CITED BY YEAR TITLE CITED BY YEAR
QTLKAT: Semantic foundations for networks 548 2014 Activation Steering for Robust Type Prediction in CodeLLMs 2024
nderson, N Foster, A Guha, JB Jeannin, D Kozen, C Schlesinger, ... y
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) ;;‘“‘/Cg::::l :2;?52404 01503
Participatory networking: An API for application control of SDNs 393 2013 .
AD Ferguson, A Guha, C Liang, R Fonseca, S Krishnamurthi StarCoder 2 and The Stack v2: The Next Generation 8 2024
ACM SIGCOMM Conference 43 (4), 327-338 ALozhkov, R Li, LB Allal, F Cassano, J Lamy-Poirier, N Tazi, ATang, ...
arXiv preprint arXiv:2402.19173
The essence of JavaScript 357 2010 3 . . .
AGuha, C Saftoiu, S Krishnamurthi Deploying and Evaluating LLMs to Program Service Mobile Robots 2 2024
ECOOP 2010-Object-Oriented Programming, 126-150 Z Hu, F Lucchetti, C Schlesinger, Y Saxena, A Freeman, S Modak, A Guha, ...
IEEE Robotics and Automation Letters
Flapjax: A programming language for Ajax applications 338 2009
LA Meyerovich, A Guha, J Baskin, GH Cooper, M Greenberg, A Bromfield, ... How Beginning Programmers and Code LLMs (Mis) read Each Other 1 2024
AACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages ... S Nguyen, HML Babe, Y Zi, A Guha, CJ Anderson, MQ Feldman
arXiv preprint arXiv:2401.15232
StarCoder: may the source be with you! 276 2023
RLi, LBAllal, Y Zi, N Muennighoff, D Kocetkov, C Mou, M Marone, C Akiki, ... Can It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing 2 2023

Transactions on Machine Learning Research (TMLR) Instructions

F Cassano, L Li, A Sethi, N Shinn, A Brennan-Jones, A Lozhkoyv, ...

Languages for software-defined networks 276 2013 arXiv preprint arXiv:2312.12450

N Foster, A Guha, M Reitblatt, A Story, MJ Freedman, NP Katta, ..
IEEE Communications Magazine 51 (2), 128-134

StarCoder: may the source be with you! 276 2023
Fattire: Declarative fault tolerance for software-defined networks 274 2013 RLi, LBAllal, ¥ Zi, N Muennighoff, D Kocetkov, C Mou, M Marone, C Akiki,
M Reitblatt, M Canini, A Guha, N Foster Transactions on Machine Learning Research (TMLR)
Proceedings of the second ACM SIGCOMM workshop on Hot topics in software ...
npm-follower: A Complete Dataset Tracking the NPM Ecosystem 1 2023
Using static analysis for Ajax intrusion detection 211 2009 D Pinckney, F Cassano, A Guha, J Bell
AGuha, S Krishnamurthi, T Jim Mining Software Repositories (MSR)
of the 18th on World wide web, 561-570
Continuing WebAssembly with Effect Handlers 6 2023
Abstractions for software-defined networks 183 2014 L Phipps-Costin, A Rossberg, A Guha, D Leijen, D Hillerstrém
M Casado, N Foster, A Guha Object-Oriented Programming, Systems, Languages & Applications (OOPSLA)
Communications of the ACM 57 (10), 86-95
. 5 Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code 4 2023
Not so fast: Analyzing the Performance of WebAssembly vs. native code 167 2019 LLMs
ﬁ;;ﬁiifﬂigf’g;ﬁsﬁfgf;; r/;fo:'lim), 107120 F Cassano, J Gouwar, F Lucchetti, C Schlesinger, CJ Anderson, ...

arXiv preprint arXiv:2308.09895

What is research?

* There are many goals, but at a high level, the goal is:
* Deeply explore an area to understand its problems
* Make progress towards solutions

* Main product of research is an academic paper. In
general, it consists of:
1. Problem statement and motivation
2. Proposed problem solution
3. Evidence for the quality and impact of the solution
4. Related work

* Wonderful essay: “You and your research”
https://www.cs.virginia.edu/~robins/YouAndYourResea
rch.html|

https://www.cs.virginia.edu/~robins/YouAndYourResearch.html
https://www.cs.virginia.edu/~robins/YouAndYourResearch.html

What is research?

The structure of research at a university: the PhD. student

e PhD. students are fully-funded
(meaning, they get a stipend) to do
research

* Graduate in 5-6 years

* Highly competitive: hundreds of
applicants for very small number of

slots

* A prerequisite to becoming a
professor at a university or pursuing
other research-oriented jobs

* Main responsibilities:
* Write papers
* Help teach courses
* Present work at conferences

Minsung Cho

PhD. Student

&} Personal webpage

&3 Email: minsung@ccs.neu.edu

What is research?

The structure of research at a university: the research group

NEU Probabilistic Programming Lab

Y L e d b y a t e n u re _t ra C k fa C u I ty_ The ilisti ing Laboratory (NeuPPL) is part of the Programming Research Laboratory at
Northeastern University. We do research at the intersection of programming languages, artificial intelligence, and machine
learning. Our i i to make li
useful for solvil asoning tasks.

member called an advisor

* Majority of the group are PhD.
students who are actively e
working on papers l' u

* Sometimes there are also post- H

docs: staff who have finished a
PhD. but are not professors

e Advisor’s job is helping select
and guide research projects,
raise funding

* In addition to other
responsibilities like teaching and
service

What is research?

The structure of research at a university: the research area

* Above the research group =2 B
is often a research area == il e
that organizes several P'rogrfangga;ggéfye;earch
g frou p S toget h er Khoury College of Computer Sciencesfé

Northeastern University ¢

* Consists of many faculty
and PhD. students

https://prl.khoury.northeastern.edu/

https://prl.khoury.northeastern.edu/

What is research?

The structure of research at a university: the college

* Northeastern is a high-research-
output (R1) university
e 15,000 graduate students, 3000 faculty

* A large amount of university
resources go into cultivating a
research environment (in addition to
a teaching environment)

PL Meets ML

A talk given at the “Programming Languages Mentorship
Workshop” an PLDI 2024

A programming language is a
language for unambiguously
describing intent to the computer

| want to find
the maximum of

two numbers def max(a, b)
1f a < b:
return b
else:
return a

PLMW@PLDI 2023 35

Programs can have bugs: when its
input/output pair is not what the
orogrammer intended

def max(a, b):

if a = b:
return b

else:
return a

PLMW@PLDI 2023

36

We can (sometimes) even prove a
program does the right thing!

Forall a, b.
max(a,b) >=a
&& def ax. b):
max(a,b) >=b

fa>.
return

return a

PLMW@PLDI 2023 37

Machine
Aeéarning

Machine learning is a means for using
data to describe intent to the computer
Two parts: Data + Model

\YileYe =]

Learn
earning (classification)

“It’s a cat”

Good luck writing a program that can do this!

True goal of ML: Generalization

* Given some finite dataset describing the world...

* ... generalize to instances beyond that dataset and
correctly predict things

PLMW@PLDI 2023

40

Machine learning must be wrong
sometimes!

Learning

“It’s a dog!”

PLMW@PLDI 2023

Measuring generalization: Accuracy

Test set
(Not used
for training)

Classifier

“I'sacat” “lIt'sadog” “lt'sacat” “It'sadog” “It’sa cat”

3 X X

Proportion of correctly predicted images on the test set is called accuracy

The perils of accuracy

Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification*

Joy Buolamwini JOYAB@QMIT.EDU
MIT Media Lab 75 Amherst St. Cambridge, MA 02139

Timnit Gebru TIMNIT.GEBRU@MICROSOFT.COM
Microsoft Research 641 Avenue of the Americas, New York, NY 10011

Classifier Metric DF DM LF LM
TPR(%) 762 100 100 100 : . .
vspp ErorRate(%) 238 00 00 00 3 major computer-vision-based gender
PPV(%) 100 842 100 100 .
FPR(%) 00 23.8 00 00 recognition tools had a bug!
TPR(%) 640 99.5 92.6 100
Faceqt ErorRate(%) 360 05 74 00
PPV(%) 99.0 77.8 100 96.9 S P . o
i o o o T Light slfmned female error rate: 0%
TPR(%) 669 943 100 984 Dark-skinned female (DF) error rate:
Error Rate(%) 33.1 57 0.0 1.6
LB PPV(%) 904 780 96.4 100 23.8%!
FPR(%) 57 331 16 00
Buolamwini, Joy, and Timnit Gebru. "Gender shades: Intersectional accuracy disparities in commercial 43

gender classification." Conference on fairness, accountability and transparency. PMLR, 2018.

Programming Machine
Languages Learning

Behavior determined by program Behavior determined by
model + data

Does exactly what the Generalizes beyond what
programmer says programmer says

Logical specification in terms of R GESANER el lSlasAelAtslc
inputs and outputs world and the program

Complementary strengths
and weaknesses

Big Challenges for ML Meets PL

Combining strengths and weaknesses of each

1. Synthesizing learning and programming
2. Verifying systems with learned components

3. Harnessing generative models

Grand challenge #1:

Synthesizing learning and
programming

Structured models

What does
this look like

inside?

How do we
Classifier describe it?

Learning

200 400

3]“

With a

9
200
400

gl

o
[250

0 0
100 "dg}
y
200 (
0

1 program!

“It’s a cat!”

PLMW@PLDI 2023 47

Model structure is critical

Accuracy & generalizability

t gt t Model Top-1 [Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
Filters W CNN 37.5% 17.0%

Image v Table 1: Comparison of results on ILSVRC-
2010 test set. In italics are best results
achieved by others.

Fig 28.8: Convolutional Neural Network
Machine Learning: A Probabilistic Perspective

More reasons...
e Data efficiency

* Control
* Reliability

PL for Model Description

° Blg idea: use a program to describe the
model!

* Why use a PL to describe a model?

e Accessible: any programmer can make a model

* Expressive: full descriptive power of a PL

Why accessibility matters for
making ML systems

€he New York Eimes

Opinion

OPINION

Artificial Intelligences White Guy
Problem

By Kate Crawiord) ()] 11

June 25, 2016

Like all technologies before it, artificial intelligence will reflect the
values of its creators. So inclusivity matters — from who designs it
to who sits on the company boards and which ethical perspectives
are included. Otherwise, we risk constructing machine intelligence
Kate Crawford that mirrors a narrow and privileged vision of society, with its old,
Sr. Principal Researcher familiar biases and stereotypes.

Microsoft Research

Languages for building ML models

Differentiable Programming

y /
4

Y A

IIIF ’ JuliaDiff

& PyTorch ¥ TensorFlow

&
Bagng w

e theano

Probabilistic Programming

~]|

Pvro
Stan y

ProblLog

Gen

FairSquare Psi

Dice

Approach #1: Differentiable Programming

Example system: Jax

from jax import grad
import jax.numpy as jnp

def tanh(x): # Define a function
y = jnp.exp(-2.0 * x)
return (1.0 - y) / (1.0 + vy)

grad_tanh = grad(tanh) # Obtain its gradient function
print(grad_tanh(1.0)) # Evaluate it at x = 1.0
prints 0.4199743

Ny

L/
2
Great blog post: https://thenumb.at/Autodiff/ M '

Approach #2: Probabilistic Programming

Program defines a probabilistic model

Joint Probability Distribution Over All States

x=T,y=T x=T,y=F x=F,y=T x=F,y=F

0.4

0.35

0.3

0.25

x ~ flip(0.5); || __
y ~ flip(0.7); 02

0.15

0.1

0.05

W Joint Probability

Generating this probability
distribution is called inference PLMW@PLDI 2023 53

Bayesian reasoning

Learning with programs

x ~ flip(0.4);
y ~ flip(0.7);
observe x or vy;
return (x,y)

0.6

0.5

0.

>

0.3

0.2

0.

=

o

0.28/0.82=0.34

x=T,y=T

x=T,y=F

m Pr(x,y)

x=F,y=T

mPr(x,y | xory)

x=F,y=F

Plan Inference

Application

tially-
tory of

iven a par

G

e Goal

observed trajec

T

e,
R
e

25
e
ey by

e,

pg3

== pg1

- Dg2

@ Pick Up Cup (A)

O Pick Up Cup (B)
= Observed

@ Pour Water (C)
@ Cup (D)

=
oo
S c &
v > c ©
-~ O oo
te po
o O o
camn mp
c - +— (@©
=3 =i
Q
G X 2 9
E U
o U0V C pC
c O ®© o 2
c & o x o
o

55

PLMW@PLDI 2023

Synthesizing learning and
programming at PLDI'23

Scallop: A Language for Neurosymbolic Programming

ZIYANG LI, University of Pennsylvania, USA

JIANI HUANG?, University of Pennsylvania, USA M)
onday @16:00

MAYUR NAIK, University of Pennsylvania, USA y@

Prompting Is Programming: A Query Language for
Large Language Models Monday @17:40

LUCA BEURER-KELLNER, MARC FISCHER, and MARTIN VECHEYV, ETH Zurich, Switzerland

Probabilistic Programming with Stochastic Probabilities

ALEXANDER K. LEW, MIT, USA
MATIN GHAVAMIZADEH, MIT, USA
MARTIN C. RINARD, MIT, USA

VIKASH K. MANSINGHKA, MIT, USA Tuesday @14:40

PLMW@PLDI 2023

56

Synthesizing learning and
programming at PLDI'23

Passport: Improving Automated Formal Verification Using Identifiers

ALEX SANCHEZ-STERN?, University of Massachusetts Amherst, USA

EMILY FIRST?, University of Massachusetts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA

ZHANNA KAUFMAN, University of Massachusetts Amherst, USA

YURIY BRUN, University of Massachusetts Amherst, USA Wed @13:40
TALIA RINGER, University of Illinois Urbana-Champaign, USA

PLMW@PLDI 2023

57

FOr more

Neurosymbolic Programming

Swarat Chaudhuri', Kevin Ellis?, Oleksandr Polozov®, Rishabh Singh*,
Armando Solar-Lezama® and Yisong Yue®

L The University of Texas at Austin; swarat@cs.utezas.edu

2 Cornell University; kellis@cornell.edu

3 Google; Work authored while at Microsoft Research;
polozov@google.com

4 Google; rising@google.com

® Massachusetts Institute of Technology (MIT); asolar@csail.mit.edu
8 The California Institute of Technology (Caltech); yyue@caltech.edu

PLMW@PLDI 2023

FOUNDATIONS OF
PROBABILISTIC
PROGRAMMING

58

Grand challenge #2:

Verli
& U

fied systernr

S WIth

ncertain co

mpor

e

earned

NtsS

ML is being used to build important
systems NOW

PLMW@PLDI 2023 60

/EXCI.USIVE: SURVEILLANCE FOOTAGE OF \
TESLA CRASH ON SF’S BAY BRIDGE HOURS b h av| N g

AFTER ELON MUSK ANNOUNCES “SELF-

DRIVING” FEATURE

Musk has said Tesla’s problematic autopilot features are “really . \
the difference between Tesla being worth a lot of money or worth bc Nclll ﬂﬂl’k @llllcs
basically zero.” .
' Ken Klippenstein The |ntercept .al ACCldent
@ 2023
6
/ &bhe New ork Eimes

2 Killed in Driverless Tesla Car Crash,
\ Officials Say

“No one was driving the vehicle” when the car crashed and burst
into flames, killing two men, a constable said.

\ April 2021

We want to verify ML systems

» Safety property: System
Be\cller oes something
a

* Probabilistic safety:
Program does
something bad with low
probability

e Systems with learned
components need both
kinds of safety

PLMW@PLDI 2023

62

Verification is hard because...

...Notion of correctness is unclear

May be high accuracy but
unsafe!

PLMW@PLDI 2023

63

Verification is hard because...

Scalability for analysis

Introduction to Neural Network Verification
A book by Aws Albarghouthi

10 -8 —6 —4 —2 2 4 6 8 10

Figure 5.2 Sigmoid function with overapproximation

PLMW@PLDI 2023 64

Verified systems with learned &
uncertain components @ FCRC 23

Abstract Interpretation of Fixpoint Iterators

with Applications to Neural Networks Mon @16:20

MARK NIKLAS MULLER, MARC FISCHER, ROBIN STAAB, and MARTIN VECHEV,
ETH Zurich, Switzerland

Architecture-Preserving Provable Repair of Deep Neural
Networks

ZHE TAO, University of California, Davis, U.S.A.
STEPHANIE NAWAS, University of California, Davis, U.S.A.

JACQUELINE MITCHELL, University of California, Davis, U.S.A. Mon @ 17:00
ADITYA V. THAKUR, University of California, Davis, U.S.A.

Incremental Verification of Neural Networks

SHUBHAM UGARE, University of Illinois Urbana-Champaign, USA Mon @17:20
DEBANGSHU BANERJEE, University of Illinois Urbana-Champaign, USA

SASA MISAILOVIC, University of Illinois Urbana-Champaign, USA

GAGANDEEP SINGH, University of Illinois Urbana-Champaign and VMware Research, USA

65

Verified systems with learned
components @ FCRC 23

Lilac: A Modal Separation Logic for Conditional Probability

JOHN M. LI, Northeastern University, USA
AMAL AHMED, Northeastern University, USA
STEVEN HOLTZEN, Northeastern University, USA Tues @13:40

One Pixel Adversarial Attacks via Sketched Programs

Tues @10:00
TOM YUVILER and DANA DRACHSLER-COHEN, Technion, Israel

Scalable Verification of GNN-Based Job Schedulers

HAOZE WU, Stanford University, USA
CLARK BARRETT, Stanford University, USA .
MAHMOOD SHARIF, Tel Aviv University, Israel Wed @14:00

NINA NARODYTSKA, VMware Research, USA
GAGANDEEP SINGH, University of Illinois at Urbana-Champaign, USA

66

Verified systems with learned
components @ FCRC 23

Verified Density Compilation for a Probabilistic
Programming Language

JOSEPH TASSAROTTI, NYU, USA
JEAN-BAPTISTE TRISTAN, AWS, USA Tues @14:00

Formally Verified Samplers from Probabilistic Programs
with Loops and Conditioning

ALEXANDER BAGNALL, Ohio University, USA
GORDON STEWART, BedRock Systems, Inc., USA

ANINDYA BANERJEE, IMDEA Software Institute, Spain Tues @14:20

PLMW@PLDI 2023

67

Grand challenge #3:

Harnessing generation

Themes in code generation

1. Models for generating code are rapidly becoming
widely-used in practice

Learning Loop Invariants for Program Verification

2. Trust but verify

Xujie Si* Hanjun Dai * Mukund Raghothaman
U y of Pennsyl Georgia Tech University of Pennsylvania
@cis.upenn.ed hanjundai @gatech.edu rmukund @cis.upenn.edu
Mayur Naik Le Song
University of Pennsylvania Georgia Tech and Ant Financial
mhnaik @cis.upenn.edu Isong@cc.gatech.edu

3. Rise of open-source models
BigCode {7/} starcoder

4. Things are moving fast

Harnessing generation
@ FCRC 23

Prompting Is Programming: A Query Language for
Large Language Models Monday @17:40

LUCA BEURER-KELLNER, MARC FISCHER, and MARTIN VECHEYV, ETH Zurich, Switzerland

PLMW@PLDI 2023

70

Conclusions

* ML Meets PL is a thriving intersection today, dozens of
papers at just this PLDI on this topic
* Many other intersections we did not have time to discuss

 Complementary strengths of ML and PL

 Some grand challenges:
1. Synthesizing learning and programming
2. \Verified systems with learned and uncertain components
3. Harnessing generative models
4. Any more?

This was a team effort

Brianna Marshall
PhD. Student (co-advised with Amal Ahmed)

&} Personal webpage
& Email: marshall.sa@northeastern.edu

John Li
PhD. Student (co-advised with Amal Ahmed)

> Personal webpage
& Email: 1i.john@northeastern.edu

Minsung Cho
PhD. Student

> Personal webpage
& Email: minsung@ccs.neu.edu

Sam Stites
PhD. Student

4 Personal webpage
& Email: stites.s@northeastern.edu

Jack Czenszak
Undergraduate Student

& Personal webpage
& Email: czenszak.j@northeastern.edu

Conclusion: ask me anything!

* | hope you learned something:
e Useful
* Memorable
* Enriching

