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“If you wish to make an apple 
pie from scratch, you must 
first invent the universe.”

Carl Sagan
November 9, 1934 -- December 20, 1996
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Questions
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Why are there so many programming languages?

What distinguishes one language from another?

Which language should I learn? Should I use?

Are some languages worse than others? Better? 
How can I compare them?

Why are new languages being made today?

How are new languages made?



Why study programming languages?

• Be a more effective programmer
• How to choose languages for your problems
• How to design and implement languages when needed

• Become equipped to learn new languages quickly

• Be prepared for an evolving world
• New languages are showing up all the time

• Enjoy an aesthetic journey through this elegant field 
(subjective)
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What is a “programming language”?
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“A programming language is a 
system of notation for writing 
computer programs.”

https://en.wikipedia.org/wiki/Programming_language
Accessed Friday, January 5

🤔

https://en.wikipedia.org/wiki/Programming_language


What is a “programming language”?
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“Computer programming language, 
any of various languages for 
expressing a set of detailed 
instructions for a digital computer.”

https://www.britannica.com/technology/computer-
programming-language
Accessed Friday, January 5

🤔

https://www.britannica.com/technology/computer-programming-language
https://www.britannica.com/technology/computer-programming-language


A programming language has two parts:
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Syntax
What does a program look like?

Semantics
What does a program do?

“Your debt
is canceled”

Ancient Mesopotamia



A programming language has two parts:
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Syntax
What does a program look like?

Python

Semantics
What does a program do?

x = 5
print(x)

• Create a variable 
called “x”

• Print the contents of 
that variable



A programming language has two parts:
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Syntax
What does a program look like?

JavaScript

Semantics
What does a program do?

let x = 5;
console.log(x)

• Create a variable 
called “x”

• Print the contents of 
that variable



A programming language has two parts:
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Syntax
What does a program look like?

OCaml

Semantics
What does a program do?

let x = 5 in
Format.printf “%s” x • Create a variable 

called “x”
• Print the contents of 

that variable



This course is all about precisely 
defining programming languages

• Grow big languages out of small ones
• Implement new languages
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Syntax
What does a program look like?

Formal descriptions as 
grammars

Semantics
What does a program do?

Programs that run 
programs

Interpreters!



Course Logistics & Content
• Course resources, staff, and policies
• Course modules and overview
• Grading and evaluation
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Read the 
syllabus on 

canvas



Course Staff

• Instructor: Steven Holtzen 
• Assistant Professor at Northeastern since 2021

• This is my first time teaching this course

• Teaching Assistants

Sam Stites
PhD. Student
stites.s@northeastern.edu

Minsung Cho
PhD. Student
minsung@ccs.neu.edu

Jack Czenszak
PhD. Student
czenszak.j@northeastern.edu

mailto:stites.s@northeastern.edu
mailto:minsung@ccs.neu.edu
mailto:czenszak.j@northeastern.edu


You are at one of the
best schools for PL
in the world

https://prl.khoury.northeastern.edu/people.html

Many of the tools we use in this 
class were developed here!

 

https://prl.khoury.northeastern.edu/people.html


Module 0: Plait
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“Most programming languages — including the most widely 
used — have serious design defects, so that learning such 
languages is less a matter of mastering a style than of learning 
workarounds for the language designer’s mistakes... I believe 
that the most reasonable approach to this problem is to first 
learn to program in a single well-designed programming 
language (or perhaps a small number of stylistically varied well-
designed languages) that imposes a minimal number of 
obstacles to the programming task”

John C. Reynolds
1935 -- 2017
Some Thoughts on Teaching Programming 
and Programming Languages, 2012



Module 0: Plait Learning 
Objectives
1. Become familiar with  functional programming 

and how to solve problems in a functional style

2. Become familiar with a typed language and 
programming with types

3. Gain practice learning a new language from 
scratch
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Module 1: Growing an interpreter

• We will grow the syntax and 
semantics of a tiny core language 
called SMoL (Standard Model of 
Languages)

• We will program interpreters for 
this language in Plait

• Language features include:
• Conditionals, scope and binding, 

first-class functions, macros, 
object, state

21

Drawing Hands
M. C. Escher 1968



Module 2: Types

• Types are form of checked specification for 
programs
• Example: Java
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import java.util.Scanner;

public class HelloWorld {

    public static void main(String[] args) {

        // Creates a reader instance which takes
        // input from standard input - keyboard

Scanner reader = new Scanner(System.in);
        System.out.print("Enter a number: ");

        // nextInt() reads the next integer from the keyboard
int number = reader.nextInt();

        // println() prints the following line to the output
        System.out.println("You entered: " + number);
    }
}
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Tony Hoare

public class Example {

    public static void main(String[] args) {
        Object obj = null;
        obj.hashCode();
    }

}

Types can’t prevent all bugs:
this is a valid Java program:

Recommended viewing: 

https://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-
Hoare/

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/


Module 2: Why study types?

• You will encounter types in your day-to-day 
programming
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def greeting(name: str) -> str: 
return 'Hello ' + name 

In 2015, Python 
added type hints



Module 2: Why study types?

• You will encounter types in your day-to-day 
programming
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interface Account {
 id: number
 displayName: string

version: 1
}

function welcome(user: Account) 
{
 console.log(user.id)
}

In 2012, TypeScript was 
introduced to add types 

to JavaScript 



Module 2: Types

• We will build our own type system for SMoL
• Learn the formal properties of type systems

• Study type inference and techniques to make 
programming with types easier

• Encounter the rich mathematical structure of types
• What formal properties can a type system give you?
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Module 3: Beyond SMoL*

• We will study advanced languages and language 
features that go beyond SMoL
• Implement and program some interesting languages
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* Subject 
to change

Goal: Broaden your horizons 
on what programming 
languages can look like

Logic programming

Laziness



Schedule overview

• Available here:
https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-
WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true
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https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true
https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true


Schedule overview
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Textbook

• Programming Languages: Application and 
Interpretation, Third Edition, by Shriram 
Krishnamurthy

• Open-access textbook, available at:
https://www.plai.org/

• We will follow it closely: you are encouraged to 
read the textbook sections ahead or after lecture as 
a reference
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https://www.plai.org/


Prerequisites

• Required: CS3500 (Object oriented design) or 
Equivalent

• Highly recommended:

• Experience programming in at least one major 
programming language

• This will be a programming-intensive course
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Input/Output

• Important course announcements will be broadcast 
as Canvas Announcements
• You should check to make sure that you receive these

• We will use Piazza
• Please ask all course questions there
• You can ask private questions
• You should have received an email invitation

• Notes/slides will be posted on Canvas after lecture

32



Assignments and grading

33

Note: Some assignments / problems will be marked 
as “CS5400”. These are only for students enrolled in 

CS5400.



A taste of Plait
Goals:
• Set up and install Plait
• Understand how to write small Plait programs and call functions
• Know the key properties of Plait
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Setting up Plait

• Follow 
https://docs.racket-
lang.org/plait/getting-
started.html

• Download 
DrRacket (use 
version 8.11.1)

• You will need to 
install the Plait .plt
file
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https://docs.racket-lang.org/plait/getting-started.html
https://docs.racket-lang.org/plait/getting-started.html
https://docs.racket-lang.org/plait/getting-started.html


DrRacket
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Definitions 
window

Interactions
window

Tells DrRacket which 
programming 
language to use 



Plait Resources

• Plait website: https://docs.racket-lang.org/plait/

• Plait tutorial: https://docs.racket-
lang.org/plait/Tutorial.html

• YouTube video tutorial: 
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rz
a1qDcS0RUnRTr9A1f

• Plait CheatSheet on Canvas

• Ask on Piazza if you get stuck :) 
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Plait is a tiny 
language made 

specifically for this 
course! We can learn 

it in a few hours…

https://docs.racket-lang.org/plait/
https://docs.racket-lang.org/plait/Tutorial.html
https://docs.racket-lang.org/plait/Tutorial.html
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rza1qDcS0RUnRTr9A1f
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rza1qDcS0RUnRTr9A1f


> 4
- Number
4
> "hello"
- String
"hello"
> 'a
- Symbol
'a
> #t
- Boolean
#t
> #f
- Boolean
#f

Simple data

• Enter code into the 
Interaction window and 
press “enter” to run your 
code
• Basic data types:

• Numbers 1, 1.2, 1/3
• Strings “quoted”
• Symbols ‘a, ‘b, 
‘sym, …

• Booleans #t #f
• Comments begin with ;
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Input Plait program called a 
term or expression

Type of entered 
term; every term 

has a type

Value program 
evaluates to

An unusual type; we 
will see more of it later



Calling functions
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• Adding two numbers:
• Unusual syntax! We will

come to appreciate it.

• Some built-in functions for integers: 

> (+ 1 2)
- Number
3

> (max 1 2)
- Number
2

> (- 2 3)
- Number
-1

> (< 10 20)
- Boolean
#t

See the Plait 
documentation for all 

the built-in functions for 
basic datatypes



Calling functions

40

• Chaining together functions:

• A note on floating point:

• Be careful! Plait represents these two values 
differently

> (+ 1 (max 3 4))
- Number
5

> (eq? (/ 1.0 3.0) 1/3)
- Boolean
#f

> 1/3
- Number
1/3

> (/ 1.0 3.0)
- Number
0.3333333333333333



Some functions on Booleans
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> (and #t #f)
- Boolean
#f

> (and #t #t #f)
- Boolean
#f

> (or #f #t)
- Boolean
#t

> (not #t)
- Boolean
#f

> (eq? #t #f)
- Boolean
#f

Variable number 
of arguments



Some functions on Strings
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> (equal? "hello" "world")
- Boolean
#f

> (string-append "hello" 
"world")
- String
"helloworld”

> (substring "hello" 1 3)
- String
"el"
> 

Get substring between index 1 
and 3, inclusive lower-bound, 

exclusive upper-bound



Types

• Plait functions expect their arguments to have 
certain types

• If you call a function with the wrong type of 
arguments, Plait will help you by complaining
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> max
- (Number Number -> Number)
#<procedure:max>

Type signature says the max 
function takes two Number as input and 

returns a Number



if expressions
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> (if #t "woohoo" "ohno")
- String
"woohoo”

> (if #t "what" 10)
typecheck failed: String vs. Number in:
  "what"
  10

> (if (< 10 20) 'ok 'oops)
- Symbol
'ok

(if guard thn els)
If the guard is true, 
evaluate thn; otherwise, 
evaluate els

if requires that both thn 
and els terms be the 
same type



Definitions

• Syntax: 
(define id e)

• id is an identifier, e is a 
Plait expression

• Creates a globally 
accessible constant 
called id
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Press “run” to run 
the definitions pane



Defining functions

• Syntax:
(define (id arg1 arg2 …) e)

• Creates a globally 
accessible function 
called id with 
arguments arg1, 
arg2, … and body e
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Defining functions

• Write a function 
“double-if-neg” that 
takes a number as an 
argument, and 
returns double that 
number if it is 
negative, otherwise 
return the input 
number
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Testing

(test e1 e2)

tests that e1 and e2
evaluate to the same 
value
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Conclusion

• Homework is due this Friday (Jan 12)

• Before next lecture:
• Download DrRacket and install Plait
• Try the first 2 homework problems

• Next time:
• Bring a computer that is setup with Plait ready to do 

some in-class activities
• We will see more Plait and practice solving more 

interesting problems
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