CS4400/5400
Programming Aanguages

Spring 2024
Instructor: Steven Holtzen
s.holtzen@northeastern.edu

‘ \ ‘ Northeastern University
Khoury College of Computer

and Information Sciences

mailto:s.holtzen@northeastern.edu

“If you wish to make an apple
pie from scratch, you must
first invent the universe.”

Carl Sagan
November 9, 1934 -- December 20, 1996

 MlanTuring 2
- 1912-1954 - - v
- Turing Machine (193¢

Babbage Diffefence Engine": "

. c 3

: Tiny-cdmputers, Tiny Languages

AUTODOCDE
1952, Aligk Glennie
i First co_mpiled programmlag Ianguage

The ENIAC Computer QT
1945 o

LISP

First programmable digital o i oan
computer : ’ i

| -.Flrst program: ;
feasibility of nuclear weapons

o n‘ B - » :
v 5 !Hi
E: . ~H‘H :

.A - | i*l
ALGOL R FLOW-MATIC/COBOL
1958 g 4 | s < _
Designed by committee Wil i o e : s Grace prper
s - . A . 1954

1950s: The Dawn of the Digital Era

> : 5 ' : L

3 Smalltalk

: 'Object-orlented prozﬁmmlng
Mid 1970:

Gt
1980 |

’

- 1972 .

~ Statically typed functional language
1973

saL

1978

Growth of Digital Computers

~ Python: Haskell

& 1908 " ¢ 11990

‘ Javawa}i \
1998 - - "

= Julia
B 2012

_. JavéScript |
1995 '

~ TypeScript
- Rust | |
;s . Swift
i N 2014

The Mod'ern'f"Era-

Questions

Why are there so many programming languages?

Which language should | learn? Should | use?

Are some languages worse than others? Better?
How can | compare them?

What distinguishes one language from another?
Why are new languages being made today?

How are new languages made?

Why study programming languages?

* Be a more effective programmer
* How to choose languages for your problems
* How to design and implement languages when needed

* Become equipped to learn new languages quickly

* Be prepared for an evolving world
* New languages are showing up all the time

* Enjoy an aesthetic journey through this elegant field
(subjective)

What is a “programming language”?

“A programming language is a ~
system of notation for writing \ =/
computer programs.”

~
o

https://en.wikipedia.org/wiki/Programming language
Accessed Friday, January 5

https://en.wikipedia.org/wiki/Programming_language

What is a “programming language”?

“Computer programming language,

any of various languages for \l?y
expressing a set of detailed

instructions for a digital computer.”
https://www.britannica.com/technology/computer-

programming-language
Accessed Friday, January 5

10

https://www.britannica.com/technology/computer-programming-language
https://www.britannica.com/technology/computer-programming-language

A programming language has two parts:

Syntax

What does a program look like?

Ancient Mesopotamia

Semantics

What does a program do?

“Your debt
is canceled”

11

A programming language has two parts:

Syntax Semantics

What does a program look like? What does a program do?
Python
X =5 « Create a variable
print(x) called “x”

* Print the contents of
that variable

A programming language has two parts:

Syntax Semantics

What does a program look like? What does a program do?
JavaScript
let x = 5; * Create a variable
called “x”

console. log(x)
* Print the contents of

that variable

A programming language has two parts:

Syntax Semantics

ike?
What does a program look like What does a program do?
OCaml
let x = 5 in .
Format.printf “%s” x * Create a variable

called “x”
* Print the contents of
that variable

This course is all about precisely
defining programming languages

Semantics
Syntax What does a program do?

What does a program look like?

Programs that run
Formal descriptions as programs
grammars

Interpreters!

* Grow big languages out of small ones
* Implement new languages

Read the
syllabus on

canvas

Course Logistics & Content

 Course resources, staff, and policies
e Course modules and overview
 Grading and evaluation

16

Course Staff

* Instructor: Steven Holtzen
e Assistant Professor at Northeastern since 2021

* This is my first time teaching this course | WORK

* Teaching Assistants

Minsung Cho Sam Stites Jack Czenszak
PhD. Student PhD. Student PhD. Student
minsung@ccs.neu.edu stites.s@northeastern.edu czenszak.j@northeastern.edu

mailto:stites.s@northeastern.edu
mailto:minsung@ccs.neu.edu
mailto:czenszak.j@northeastern.edu

You are at one of the
best schools for PL
in the world

https://prl.khoury.northeastern.edu/people.html

Many of the tools we use in this

class were developed here!

A R

https://prl.khoury.northeastern.edu/people.html

Module O: Plait

“Most programming languages — including the most widely
used — have serious design defects, so that learning such
languages is less a matter of mastering a style than of learning
workarounds for the language designer’s mistakes... | believe
that the most reasonable approach to this problem is to first
learn to program in a single well-designed programming
language (or perhaps a small number of stylistically varied well-
designed languages) that imposes a minimal number of
obstacles to the programming task”

John C. Reynolds
1935 -- 2017

Some Thoughts on Teaching Programming
and Programming Languages, 2012

19

Module O: Plait Learning
Objectives

1. Become familiar with functional programming
and how to solve problems in a functional style

2. Become familiar with a typed language and
programming with types

3. Gain practice learning a new language from
scratch

Module 1: Growing an interpreter

* We will grow the syntax and
semantics of a tiny core language
called SMolL (Standard Model of

Languages)

 We will program interpreters for
this language in Plait

Drawing Hands
e Language features include: M. C. Escher 1968

* Conditionals, scope and binding,
first-class functions, macros,
object, state

21

Module 2: Types

* Types are form of checked specification for
programs

* Example: Java

import java.util.Scanner;
public class HelloWorld {
public static void main(String[] args) {
// Creates a reader instance which takes
// input from standard input - keyboard
Scanner reader = new Scanner(System.in);

System.out.print("Enter a number: ");

// nextInt() reads the next integer from the keyboard
int number = reader.nextInt();

// println() prints the following line to the output
System.out.println("You entered: " + number);

Tony Hoare

Null References:
The Billion Dollar

Mistake

Tony Hoare

Types can’t prevent all bugs:
this is a valid Java program:

public class Example {

public static void main(String[] args) {
Object obj = null;
obj.hashCode();

}

Recommended viewing:

https://www.infog.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-

Hoare/

23

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Module 2: Why study types?

* You will encounter types in your day-to-day
programming

def greeting(name: str) —> str: In 2015, Python

return 'Hello ' + name

added type hints

24

Module 2: Why study types?

* You will encounter types in your day-to-day
programming

interface Account {
id: number In 2012, TypeScript was
displayName: string introduced to add types
version: 1 to JavaScript

function welcome(user: Account)

{
}

console. log(user.id)

25

Module 2: Types

* We will build our own type system for SMolL
* Learn the formal properties of type systems

 Study type inference and techniques to make
programming with types easier

* Encounter the rich mathematical structure of types
 What formal properties can a type system give you?

WORK

Module 3: Beyond SMolL* * Subject

to change

* We will study advanced languages and language
features that go beyond SMolL

* Implement and program some interesting languages

a(g,h).
b
S T N\, Laziness
a(h, f). \ f/A
Y
h

a(e,f). e ~ v

a(a,e). /—
d
A

a(a,b).
a(b,f).
a(b,c).
a(f,c).

Logic programming

Goal: Broaden your horizon:
on what programming
languages can look like

Schedule overview

e Available here:

https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-
WnG7YU5iebhTOXuWTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2027tdOoe/pubhtml?gid=0&single=true

CS4400 Spring'24 Schedule : Sheet1

Module Date Lecture title Topics Resources
Introduction to Plait and - Why programming languages?
Functional Programming Monday Jan 8 Introduction and course overview - Afirst look at Racket/Plait https://docs.racket-lang.org/plait/Tutorial.html Sections 1.1 -- 1.5

- Solving problems functionally and recursively
- How to write tests in Plait
Wednesday Jan 10 Programming in Racket and Plait - How Plait's type system works https://docs.racket-lang.org/plait/Tutorial.html Sections 1.1 -- 1.8

Monday Jan 15 No Class --- Martin Luther King Jr. Day
Wednesday Jan 17 No Class --- Steven Traveling for POPL - Optional in-class workshop on Plait
- Abstract syntax trees

Building a SMoL - A simple calculator language PLAI pg. 17 -- 27
Interpreter Monday Jan 22 Abstract Syntax - Interpreting a language by hand See https://www.plai.org/3/2/PLAI%20Version%203.2.2%20printing.pdf
- Implementing and testing the evaluator
Wednesday Jan 24 Evaluation - Parsing and s-expressions PLAI pg. 28 -- 37

- Extending the syntax with "if’
- Design space of "if’

Monday Jan 29 Conditionals - Adding Booleans, the “Value" type PLAI pg. 37 -- 47
- The ’let” syntax
- Scope
Wednesday Jan 31 Local binding - An evaluator for “let’ PLAI pg. 47 -- 57

- Syntax for functions
- Adding functions to the *Value® type
Monday Feb 5 First-class functions - Evaluating functions PLAI pg. 58 -- 69
- Desugaring
- An example: Strict If
- define-syntax
Wednesday Feb 7 Growing SMoL: Macros - Macro stepping in DrRacket PLAIl pg. 71 -- 84

- The "standard model" of objects
- State
Monday Feb 12 Objects | - Access control PLAI pg. 85 -- 95

https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true
https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true

Schedule overview

Types Wednesday Feb 14

Monday Feb 19

Wednesday Feb 21
Monday Feb 26
Wednesday Feb 28
Monday Mar 4
Wednesday Mar 6
Monday Mar 11
Wednesday Mar 13
Monday Mar 18

Wednesday Mar 20

Paradigms Monday Mar 25

Wednesday Mar 27

Monday Apr 1
Wednesday Apr 3

Monday Apr 8
Wednesday Apr 10
Monday Apr 15
Wednesday Apr 17

Objects Il

Introduction to types

Typing functions

The Simply Typed Lambda Calculus

Safety and soundness
No Class -- Spring Break
No Class -- Spring Break

Type inference
Algebraic datatypes and pairs
Subtyping

Gradual typing

Logic Programming |
Logic Programming Il

Laziness |
Laziness Il

Effects |

Effects Il

No Class -- Patriot's day
Slack day

- Extending objects: mixins, traits

- What are types?
- A simple type checker
- How to read and write typing judgments

- The typing rule for functions

- Assume-guarantee reasoning
- Making a typechecker

- Handling recursion

- Syntax and a type checker
- The Omega term and normalization

- What is type safety, why do you want it
- Enforcing type safety
- Type safety for simply-typed lambda calculus

- Basic goals of type inference
- Hindley-Milner
- Complexity of type inference

- Typechecking algebraic datatypes and pairs
- Proofs and programs: Curry-Howard

- Adding subtyping to typing judgments

- Applications: information flow analysis

- TypeScript, typed Python, Typed Racket

- Programming with relations
- Unification
- A simple type checker

- Evaluation schemes: eager, lazy, call-by-need,
call by name

- Consequences of evaluation schemes

- A lazy evaluator

- Programming in lazy languages

- Modeling state and mutation

- A taste of Haskell

- Effects in Racket
- Effect handlers

PLAI pg.

PLAI pg.

PLAI pg.

PLAI pg.

PLAI pg.
PLAI pg.
PLAI pg.

PLAI pg.

PLAI pg.
PLAI pg.

97 -- 106
109 - 122
123 - 132
133 - 144
145 - 149
150 - 153
165 - 170
170 - 176
178 - 184
193 - 202

Textbook

* Programming Languages: Application and
Interpretation, Third Edition, by Shriram
Krishnamurthy

* Open-access textbook, available at:
https://www.plai.org/

* We will follow it closely: you are encouraged to
read the textbook sections ahead or after lecture as
a reference

30

https://www.plai.org/

Prerequisites

e Required: CS3500 (Object oriented design) or
Equivalent

* Highly recommended:

* Experience programming in at least one major
programming language

* This will be a programming-intensive course

Input/Output

* Important course announcements will be broadcast
as Canvas Announcements

* You should check to make sure that you receive these

* We will use Piazza
* Please ask all course questions there
* You can ask private questions
* You should have received an email invitation

* Notes/slides will be posted on Canvas after lecture

Assignments and grading

Type Frequency Percent of Final Grade

Homework About once a week 60%
Quizzes About 4 40%

Range | >93 | [90,93) | [87,90) | [83,87) | [80,83) | [77,80) | [73,77) | [70,73) | [67,70) | [60, 67) | <50

Grade | A A- B+ B B- C+ C C- D+ D F

Note: Some assighments / problems will be marked

as “CS5400”. These are only for students enrolled in
CS5400.

A taste of Plait

Goals:

* Set up and install Plait

* Understand how to write small Plait programs and call functions
 Know the key properties of Plait

Setting up Plait

* Follow

https://docs.racket-
lang.org/plait/getting-
started.html

* Download
DrRacket (use
version 8.11.1)

* You will need to
install the Plait .plt
file

Untitledw (define ...)w

1 | #lang plait

Untitled - DrRacket

O Debug @l Macro Stepper 35| Run[> Stop

Welcome to DrRacket, version 8.11.1 [cs].

Determine language from source

v

2:0

Language: plait, with debugging; memory limit: 128 MB.
>

50628 MB[| & ®

https://docs.racket-lang.org/plait/getting-started.html
https://docs.racket-lang.org/plait/getting-started.html
https://docs.racket-lang.org/plait/getting-started.html

DrRacket

Definitions
window

Interactions
window

Tells DrRacket which
programming
language to use

o o Untitled - DrRacket

Untitledv (defie ...) v O« Debug @[Macro Stepper §3'B| Run[> Stop [l

1 | #lang plait

Welcome to DrRacket, version 8.11.1 [cs].
Language: plait, with debugging; memory limit: 128 MB.
>

Determine language from source v 2:0 506.28 MB D <ﬁ> o

JU

Plait Resources

* Plait website: https://docs.racket-lang.org/plait/

* Plait tutorial: https://docs.racket-
lang.org/plait/Tutorial.html

 YouTube video tutorial:

httgs:[éwww. outube.com/playlist?list=PLbdXd8eufjyUT8rz
alqgDc UnRIr9A1t

e Plait CheatSheet on Canvas

HENANER)Y
* Ask on Piazza if you get stuck :) language made

specifically for this
course! We can learn
itin a few hours...

https://docs.racket-lang.org/plait/
https://docs.racket-lang.org/plait/Tutorial.html
https://docs.racket-lang.org/plait/Tutorial.html
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rza1qDcS0RUnRTr9A1f
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rza1qDcS0RUnRTr9A1f

Simple data

* Enter code into the
Interaction window and
press “enter” to run your
code

* Basic data types:
* Numbers1, 1.2, 1/3
e Strings “quoted”
« Symbols ‘a, ‘Db,
‘sym, ..
* Booleans #t #f

* Comments begin with ;

Input Plait program called a

term or expression

Type of entered
> 4 term; every term
— Number has a type
4

Value program
11 11
> he¥10 evaluates to
— String
"hello"
> 'a An unusual type; we
— Symbo 1 will see more of it later
|
d
> #t
— Boolean
#t
> #f
— Boolean

#f s

Calling functions

> (+ 1 2)
* Adding two numbers: — Number

* Unusual syntax! We will 3
come to appreciate it.

* Some built-in functions for integers:

> (max 1 2)

— Number

2

> (-2 3) See the Plait

— Number documentation for all

-1 the built-in functions for
basic datatypes

> (< 10 20)

— Boolean

#t

Calling functions

* Chaining together functions:

> (+ 1 (max 3 4))
— Number
5

> (eq? (/ 1.0 3.0) 1/3)

o : . +. — Boolean
A note on floating point: .

* Be careful! Plait represents these two values
differently

> 1/3 > (/ 1.0 3.0)
— Number — Number
1/3 0.3333333333333333

Some functions on Booleans

> (and #t #f)
— Boolean
#f

Variable number

> (and #t #t #f) of arguments
— Boolean
#f

> (or #f #t)

— Boolean
#t

> (not #t)
— Boolean
#f

> (eq? #t #f)
— Boolean
#f

41

Some functions on Strings

> (equal? "hello" "world")
— Boolean
#f

> (string-append "hello"
"world")

— String

"helloworld”

Get substring between index 1

> (substring "hello" 1 3)
— String

Ile'Lll

>

and 3, inclusive lower-bound,
exclusive upper-bound

42

Types

* Plait functions expect their arguments to have
certain types Type signature says the max

function takes two Number as input and
returns a Number

> max
— (Number Number -> Number)
#<procedure:max>

* If you call a function with the wrong type of
arguments, Plait will help you by complaining

> (max 1 "oops")

X typecheck failed: Number vs. String in:
max
Iloopsll

43

if expre55|0ns (if guard thn els)

If the guard is true,

evaluate thn; otherwise,
evaluate els

> (if #t "woohoo" "ohno")
— String
""woohoo”

1f requires that both thn

and els terms be the
same type

> (if #t "what" 10)
typecheck failed: String vs. Number in:
"what"
10

> (if (< 10 20) 'ok 'oops)
— Symbol
'ok

44

Press “run” to run

D efl n Itl O n S the definitions pane

[2N J Untitled 3 - DrRacket
Untitled 3w (define ...) v up(E] O« Debug @ Macro Stepper "Bl Run[> Stop
1 | #lang plait

¢ Syntaxs] (define my-const 10) \
(define id e)

e 1d is an identifier, e is a
Plait expression

Welcome to DrRacket, version 8.11.1 [cs]. \
Language: plait, with debugging; memory limit: 128 MB.

> my-const

— Number

10

* Creates a globally > (+ 5 my-const)

— Number

accessible constant 15
called 1d

Determine language from source v 9:2 585.39 MB \:\ ﬁ []

45

Defining functions

® [) Untitled 2 - DrRacket
Untitied 2v (define ..)v (5] O« Debug @[Macro Stepper g'B| Run[> Stop i
¢ SyntaX: 1 | #lang plait
) : 2
(define (id argl arg2 ..) e) (define (add-one x) (+ x 1))

* Creates a globally
accessible function
called 1d with

Welcome to DrRacket, version 8.11.1 [cs].
a rgu m e nts a r g 1 ’ Language: plait, with debugging; memory limit: 128 MB.
> (add-one 2)

a rgz J nmn and bOdy e ;Number

. Determine language from source v 6:2 547.40 MB D <£> ()

Defining functions

* Write a function
“double-if-neg” that
takes a number as an
argument, and
returns double that
number if it is
negative, otherwise
return the input
number

® [] Untitled 3 - DrRacket

Untitled 3v (define) v =p({E] O« Debug @[Macro Stepper B[Run[> Stop [l

#lang plait

1
2
3 | (define (add-one x) (+ x 1))

4 | (define (add-twice x) (+ x x))
5| (define (double-if-neg x)

P (if (< x 0) (add-twice x) x))

Welcome to DrRacket, version 8.11.1 [cs].

Language: plait, with debugging; memory limit: 128 MB.
> (double-if-neg -10)

— Number

-20

> (double-if-neg 10)

— Number

10

> |

Determine language from source v 9:2 566.05 MB D % []

47

Testing

(test el e2)

tests that el and e2
evaluate to the same
value

® () Untitled 3 - DrRacket

Untitied 3v (define ..)v up(E] O« Debug @I Macro Stepper @B Run[> Stop i
\

1 | #lang plait
2 \‘
3 | (define (add-one x) (+ x 1))
4 | (define (add-twice x) (+ x x))
5| (define (double-if-neg x)
6 (if (< x @) (add-twice x) x))
7
8 | (test (double-if-neg 10) 10)
IE) (test (double-if-neg -10) -20)
Welcome to DrRacket, version 8.11.1 [cs].
Language: plait, with debugging; memory limit: 128 MB.

good (double-if-neg 10) at line 8
expected: 10
given: 10

good (double-if-neg -10) at line 9
expected: -20
given: -20

> |

Determine language from source v 11:2 585.26 MB D @ [)

48

Conclusion
* Homework is due this Friday (Jan 12)

e Before next lecture:
e Download DrRacket and install Plait
* Try the first 2 homework problems

e Next time:

* Bring a computer that is setup with Plait ready to do
some in-class activities

* We will see more Plait and practice solving more
interesting problems

