
CS4400/5400
Programming 𝜆anguages

Spring 2024
Instructor: Steven Holtzen

s.holtzen@northeastern.edu

mailto:s.holtzen@northeastern.edu

“If you wish to make an apple
pie from scratch, you must
first invent the universe.”

Carl Sagan
November 9, 1934 -- December 20, 1996

3

4

5

6

Questions

7

Why are there so many programming languages?

What distinguishes one language from another?

Which language should I learn? Should I use?

Are some languages worse than others? Better?
How can I compare them?

Why are new languages being made today?

How are new languages made?

Why study programming languages?

• Be a more effective programmer
• How to choose languages for your problems
• How to design and implement languages when needed

• Become equipped to learn new languages quickly

• Be prepared for an evolving world
• New languages are showing up all the time

• Enjoy an aesthetic journey through this elegant field
(subjective)

8

What is a “programming language”?

9

“A programming language is a
system of notation for writing
computer programs.”

https://en.wikipedia.org/wiki/Programming_language
Accessed Friday, January 5

🤔

https://en.wikipedia.org/wiki/Programming_language

What is a “programming language”?

10

“Computer programming language,
any of various languages for
expressing a set of detailed
instructions for a digital computer.”

https://www.britannica.com/technology/computer-
programming-language
Accessed Friday, January 5

🤔

https://www.britannica.com/technology/computer-programming-language
https://www.britannica.com/technology/computer-programming-language

A programming language has two parts:

11

Syntax
What does a program look like?

Semantics
What does a program do?

“Your debt
is canceled”

Ancient Mesopotamia

A programming language has two parts:

12

Syntax
What does a program look like?

Python

Semantics
What does a program do?

x = 5
print(x)

• Create a variable
called “x”

• Print the contents of
that variable

A programming language has two parts:

13

Syntax
What does a program look like?

JavaScript

Semantics
What does a program do?

let x = 5;
console.log(x)

• Create a variable
called “x”

• Print the contents of
that variable

A programming language has two parts:

14

Syntax
What does a program look like?

OCaml

Semantics
What does a program do?

let x = 5 in
Format.printf “%s” x • Create a variable

called “x”
• Print the contents of

that variable

This course is all about precisely
defining programming languages

• Grow big languages out of small ones
• Implement new languages

15

Syntax
What does a program look like?

Formal descriptions as
grammars

Semantics
What does a program do?

Programs that run
programs

Interpreters!

Course Logistics & Content
• Course resources, staff, and policies
• Course modules and overview
• Grading and evaluation

16

Read the
syllabus on

canvas

Course Staff

• Instructor: Steven Holtzen
• Assistant Professor at Northeastern since 2021

• This is my first time teaching this course

• Teaching Assistants

Sam Stites
PhD. Student
stites.s@northeastern.edu

Minsung Cho
PhD. Student
minsung@ccs.neu.edu

Jack Czenszak
PhD. Student
czenszak.j@northeastern.edu

mailto:stites.s@northeastern.edu
mailto:minsung@ccs.neu.edu
mailto:czenszak.j@northeastern.edu

You are at one of the
best schools for PL
in the world

https://prl.khoury.northeastern.edu/people.html

Many of the tools we use in this
class were developed here!

https://prl.khoury.northeastern.edu/people.html

Module 0: Plait

19

“Most programming languages — including the most widely
used — have serious design defects, so that learning such
languages is less a matter of mastering a style than of learning
workarounds for the language designer’s mistakes... I believe
that the most reasonable approach to this problem is to first
learn to program in a single well-designed programming
language (or perhaps a small number of stylistically varied well-
designed languages) that imposes a minimal number of
obstacles to the programming task”

John C. Reynolds
1935 -- 2017
Some Thoughts on Teaching Programming
and Programming Languages, 2012

Module 0: Plait Learning
Objectives
1. Become familiar with functional programming

and how to solve problems in a functional style

2. Become familiar with a typed language and
programming with types

3. Gain practice learning a new language from
scratch

20

Module 1: Growing an interpreter

• We will grow the syntax and
semantics of a tiny core language
called SMoL (Standard Model of
Languages)

• We will program interpreters for
this language in Plait

• Language features include:
• Conditionals, scope and binding,

first-class functions, macros,
object, state

21

Drawing Hands
M. C. Escher 1968

Module 2: Types

• Types are form of checked specification for
programs
• Example: Java

22

import java.util.Scanner;

public class HelloWorld {

 public static void main(String[] args) {

 // Creates a reader instance which takes
 // input from standard input - keyboard

Scanner reader = new Scanner(System.in);
 System.out.print("Enter a number: ");

 // nextInt() reads the next integer from the keyboard
int number = reader.nextInt();

 // println() prints the following line to the output
 System.out.println("You entered: " + number);
 }
}

23

Tony Hoare

public class Example {

 public static void main(String[] args) {
 Object obj = null;
 obj.hashCode();
 }

}

Types can’t prevent all bugs:
this is a valid Java program:

Recommended viewing:

https://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-
Hoare/

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Module 2: Why study types?

• You will encounter types in your day-to-day
programming

24

def greeting(name: str) -> str:
return 'Hello ' + name

In 2015, Python
added type hints

Module 2: Why study types?

• You will encounter types in your day-to-day
programming

25

interface Account {
 id: number
 displayName: string

version: 1
}

function welcome(user: Account)
{
 console.log(user.id)
}

In 2012, TypeScript was
introduced to add types

to JavaScript

Module 2: Types

• We will build our own type system for SMoL
• Learn the formal properties of type systems

• Study type inference and techniques to make
programming with types easier

• Encounter the rich mathematical structure of types
• What formal properties can a type system give you?

26

Module 3: Beyond SMoL*

• We will study advanced languages and language
features that go beyond SMoL
• Implement and program some interesting languages

27

* Subject
to change

Goal: Broaden your horizons
on what programming
languages can look like

Logic programming

Laziness

Schedule overview

• Available here:
https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-
WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true

28

https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true
https://docs.google.com/spreadsheets/d/e/2PACX-1vQNTDbNs-WnG7YU5iebhT9XuWfTNF2LBSPWzU1ctif8YrNuciQWZDtzU2hviaFt22asf1C2O27tdOoe/pubhtml?gid=0&single=true

Schedule overview

29

Textbook

• Programming Languages: Application and
Interpretation, Third Edition, by Shriram
Krishnamurthy

• Open-access textbook, available at:
https://www.plai.org/

• We will follow it closely: you are encouraged to
read the textbook sections ahead or after lecture as
a reference

30

https://www.plai.org/

Prerequisites

• Required: CS3500 (Object oriented design) or
Equivalent

• Highly recommended:

• Experience programming in at least one major
programming language

• This will be a programming-intensive course

31

Input/Output

• Important course announcements will be broadcast
as Canvas Announcements
• You should check to make sure that you receive these

• We will use Piazza
• Please ask all course questions there
• You can ask private questions
• You should have received an email invitation

• Notes/slides will be posted on Canvas after lecture

32

Assignments and grading

33

Note: Some assignments / problems will be marked
as “CS5400”. These are only for students enrolled in

CS5400.

A taste of Plait
Goals:
• Set up and install Plait
• Understand how to write small Plait programs and call functions
• Know the key properties of Plait

34

Setting up Plait

• Follow
https://docs.racket-
lang.org/plait/getting-
started.html

• Download
DrRacket (use
version 8.11.1)

• You will need to
install the Plait .plt
file

35

https://docs.racket-lang.org/plait/getting-started.html
https://docs.racket-lang.org/plait/getting-started.html
https://docs.racket-lang.org/plait/getting-started.html

DrRacket

36

Definitions
window

Interactions
window

Tells DrRacket which
programming
language to use

Plait Resources

• Plait website: https://docs.racket-lang.org/plait/

• Plait tutorial: https://docs.racket-
lang.org/plait/Tutorial.html

• YouTube video tutorial:
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rz
a1qDcS0RUnRTr9A1f

• Plait CheatSheet on Canvas

• Ask on Piazza if you get stuck :)

37

Plait is a tiny
language made

specifically for this
course! We can learn

it in a few hours…

https://docs.racket-lang.org/plait/
https://docs.racket-lang.org/plait/Tutorial.html
https://docs.racket-lang.org/plait/Tutorial.html
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rza1qDcS0RUnRTr9A1f
https://www.youtube.com/playlist?list=PLbdXd8eufjyUT8rza1qDcS0RUnRTr9A1f

> 4
- Number
4
> "hello"
- String
"hello"
> 'a
- Symbol
'a
> #t
- Boolean
#t
> #f
- Boolean
#f

Simple data

• Enter code into the
Interaction window and
press “enter” to run your
code
• Basic data types:

• Numbers 1, 1.2, 1/3
• Strings “quoted”
• Symbols ‘a, ‘b,
‘sym, …

• Booleans #t #f
• Comments begin with ;

38

Input Plait program called a
term or expression

Type of entered
term; every term

has a type

Value program
evaluates to

An unusual type; we
will see more of it later

Calling functions

39

• Adding two numbers:
• Unusual syntax! We will

come to appreciate it.

• Some built-in functions for integers:

> (+ 1 2)
- Number
3

> (max 1 2)
- Number
2

> (- 2 3)
- Number
-1

> (< 10 20)
- Boolean
#t

See the Plait
documentation for all

the built-in functions for
basic datatypes

Calling functions

40

• Chaining together functions:

• A note on floating point:

• Be careful! Plait represents these two values
differently

> (+ 1 (max 3 4))
- Number
5

> (eq? (/ 1.0 3.0) 1/3)
- Boolean
#f

> 1/3
- Number
1/3

> (/ 1.0 3.0)
- Number
0.3333333333333333

Some functions on Booleans

41

> (and #t #f)
- Boolean
#f

> (and #t #t #f)
- Boolean
#f

> (or #f #t)
- Boolean
#t

> (not #t)
- Boolean
#f

> (eq? #t #f)
- Boolean
#f

Variable number
of arguments

Some functions on Strings

42

> (equal? "hello" "world")
- Boolean
#f

> (string-append "hello"
"world")
- String
"helloworld”

> (substring "hello" 1 3)
- String
"el"
>

Get substring between index 1
and 3, inclusive lower-bound,

exclusive upper-bound

Types

• Plait functions expect their arguments to have
certain types

• If you call a function with the wrong type of
arguments, Plait will help you by complaining

43

> max
- (Number Number -> Number)
#<procedure:max>

Type signature says the max
function takes two Number as input and

returns a Number

if expressions

44

> (if #t "woohoo" "ohno")
- String
"woohoo”

> (if #t "what" 10)
typecheck failed: String vs. Number in:
 "what"
 10

> (if (< 10 20) 'ok 'oops)
- Symbol
'ok

(if guard thn els)
If the guard is true,
evaluate thn; otherwise,
evaluate els

if requires that both thn
and els terms be the
same type

Definitions

• Syntax:
(define id e)

• id is an identifier, e is a
Plait expression

• Creates a globally
accessible constant
called id

45

Press “run” to run
the definitions pane

Defining functions

• Syntax:
(define (id arg1 arg2 …) e)

• Creates a globally
accessible function
called id with
arguments arg1,
arg2, … and body e

46

Defining functions

• Write a function
“double-if-neg” that
takes a number as an
argument, and
returns double that
number if it is
negative, otherwise
return the input
number

47

Testing

(test e1 e2)

tests that e1 and e2
evaluate to the same
value

48

Conclusion

• Homework is due this Friday (Jan 12)

• Before next lecture:
• Download DrRacket and install Plait
• Try the first 2 homework problems

• Next time:
• Bring a computer that is setup with Plait ready to do

some in-class activities
• We will see more Plait and practice solving more

interesting problems

49

