
CS4400/5400
Programming 𝜆anguages

Lecture 3
Interpreters & abstract syntax

Spring 2024
Instructor: Steven Holtzen

s.holtzen@northeastern.edu

mailto:s.holtzen@northeastern.edu

Goals for today

1. Build calc, our very first language in Plait

2. Learn how to run an interpreter by hand

3. Understand abstract syntax

4. If time: parsing

2

Logistics

• Reminder: Homework #2 due Wednesday

• Next homework coming out Wednesday, due Friday Feb
2

• At this point, you should be quite comfortable
programming in Plait

• Course webpage up (see Canvas syllabus page)
• https://pages.github.khoury.northeastern.
edu/sholtzen/cs4400-spr24/

3

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-spr24/
https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-spr24/

What is our eventual goal?

• We are going to give the syntax and semantics for
calc:

4

Recall: syntax and semantics

5

Syntax
What does a program look like?

Python

Semantics
What does a program do?

x = 5
print(x)

• Create a variable
called “x”

• Print the contents of
that variable

Recall: syntax and semantics

6

Syntax
What does a program look like?

Formal descriptions as
grammars

Semantics
What does a program do?

Programs that run
programs

Interpreters!

Syntax
The presentation of programs

7

Goal

• Give the syntax for a tiny calculator programming
language
• Support numbers and addition
• Be able to write programs like “1 + 2” and “3 + 4 + 10”

8

Parsing spoken language

• Sentences are formed by building complex phrases out of
smaller ones
• The rules for this process are called grammars

• A noun is an object
• ”dog”, “Steven”, …

• A verb is an action
• “eats”, “cuts”, …

• A tiny sentence consists of a noun (subject), a verb, and a
noun (object)
• “Steven eats food”

9

Parsing spoken language

• Sentence parsing: extracting the grammatical
structure of a sentence from its presentation

10

Steven eats food
N. Chomsky
Phrase structure grammar

What is the syntax of programs?

• Syntax is the presentation of a program
• What you give to the computer
• Text, diagrams, etc.

• There is wide variability in program syntax
• People have different aesthetic preferences

11

(+ 1 2)

1 + 2 + 3
Infix

S-exp

Circuit

Abstract syntax

• First big idea: Abstract away the details of the
program presentation

12

(+ 1 2)
1 + 2

Parse

Surface syntax Abstract syntax
• Easy for programmers to write
• Concise and aesthetically pleasing
• Called “Surface” to distinguish it from

“abstract”

• Easy for computers to understand
• Precise and unambiguous

Abstract syntax tree (AST)

• An AST is a tree-based representation of surface-
syntax
• Each node in the tree is called a term
• The child of a term is a sub-term
• Translating surface syntax to abstract syntax is called

parsing

13

1 + 2 + 3 Parse

Representing ASTs in Plait

14

(define-type Exp
 [num (n : Number)]
 [plus (left : Exp) (right : Exp)])

> (plus (plus (num 1) (num 2)) (num 3))
- Exp
(plus (plus (num 1) (num 2)) (num 3))

Some exercises

• Build the calc AST for the expression (written
with infix notation):

((1 + 2) + (3 + 4)) + 5

• Build the calc AST for the expression (written with
s-expression notation):

(+ (+ (+ 1 2) (+ 3 4)) 5)

15

Ponder

• We could have chosen an alternative datatype for
calc:

• What are the pros and cons of this choice of
abstract syntax?

16

(define-type Exp
 [num (n : Number)]
 [plus (left : (Listof Exp))])

Semantics
The meaning of programs

17

What is semantics?

• Associate syntactic with a meaning

18

Steven has a cat

Semantics of calc
• Give a meaning to every term

by describing what they evaluate to

• Numbers evaluate to numbers
• To evaluate , first evaluate e1, then e2,

then evaluate their sum

19

Evaluating by hand

• To evaluate by hand, draw a sequence of steps

20

“first evaluate e1"

Implementing an evaluator in Plait

21

(calc : (Exp -> Number))
(define (calc e)
 ???)

Start by writing the type
and the shape of the

function

Implementing an evaluator in Plait

22

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) ???]
 [(plus l r) ???))

Following the design recipe,
we can fill in the type-case
to destruct the argument

Implementing an evaluator in Plait

23

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) n]
 [(plus e1 e2) ???))

The base case is easy:
“Numbers evaluate to

numbers”

Implementing an evaluator in Plait

24

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) n]
 [(plus e1 e2)
 (+ (calc e1) (calc e2))]))

The inductive case: first
evaluate e1, then e2,

then evaluate their sum

This program is called an interpreter for calc,
and it gives the precise semantics of calc programs

Interpreting (running)
calc programs

25

Syntax and semantics of calc

26

Abstract syntax Semantics

(define-type Exp
 [num (n : Number)]
 [plus (left : Exp)
 (right : Exp)])

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) n]
 [(plus e1 e2)
 (+ (calc e1)
 (calc e2))]))

Ponder

• We could have chosen an alternative semantics for
calc where we evaluate e2 before e1:

• Is this semantics fundamentally different from the
one that evaluates e1 first? Why or why not?

27

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) n]
 [(plus e1 e2)
 (+ (calc e2) (calc e1))]))

Ponder

• Suppose we were using our list-based abstract
syntax from earlier:

• What should the semantics of the plus with an
empty list be? What should we do?
• (there is no right answer here; there are pros and cons)

28

(define-type Exp
 [num (n : Number)]
 [plus (left : (Listof Exp))])

Parsing
From syntax to abstract syntax

29

Surface syntax

• We want to release our calc program to the world

• One option: make programmers simply give us calc
ASTs

• This is a bit undesirable; why do they need to tell us 1 is
a number, and I would like to use “+” instead of “plus”

• As our languages get more complex, such small annoyances
become unbearable

30

(plus (plus (num 1) (num 2)) (num 3))

Surface syntax

• What surface syntax should we choose for our
calc language? We can choose many…
• Let’s choose s-expressions!

• Plait has very good built-in support for parsing and
manipulating s-expressions

31

(+ 1 (+ 2 3))

The s-expression datatype

• Every s-expression is either:
• A constant (Boolean, empty list, number, symbol, string

character)
• A list of Plait s-expressions

• We could write this as a datatype:

32

(define-type S-Expr
 [bool (b : Boolean)]
 [empty]
 [num (n : Number)]
 [symbol (s : Symbol)]
 [string (s : String)]
 [list (l : (Listof S-Expr))])

Fun fact: Plait
programs are s-

expressions!

Constructing s-expressions

• S-expressions are a built-in Plait datatype
• Constructed using a backtick `

33

> `1
- S-Exp
`1
> `#t
- S-Exp
`#t
> `dog
- S-Exp
`dog

Constructing s-expressions

• The backtick turns a Plait term into an s-expression

34

> `(+ 1 2)
- S-Exp
`(+ 1 2)
> `(hello + world 123)
- S-Exp
`(hello + world 123)
> `(what (are you) doing)
- S-Exp
`(what (are you) doing)
> `(+ (+ 1 2) 3)
- S-Exp
`(+ (+ 1 2) 3)

We can also use curly
braces `{+ 1 2}

Testing s-expressions

35

> (s-exp-number? `10)
- Boolean
#t

> (s-exp-number? `t)
- Boolean
#f

> (s-exp-boolean? `#t)
- Boolean
#t

> (s-exp-symbol? `hello)
- Boolean
#t

> (s-exp-list? `(1 2 3))
- Boolean
#t

Destructing s-expressions

36

> (s-exp->boolean `#t)
- Boolean
#t

> (s-exp->boolean `oops)
- Boolean
. . s-exp->boolean: not a boolean: `oops

> (s-exp->number `10)
- Number
10

> (s-exp->symbol 'hello)
. typecheck failed: S-Exp vs. Symbol in:
 s-exp->symbol
 (quote hello)

> (s-exp->symbol `hello)
- Symbol
'hello

> (s-exp->list `(1 2 3))
- (Listof S-Exp)
(list `1 `2 `3)

S-expressions as calc syntax

• We will use s-expressions to give a convenient
surface syntax to calc

37

> (parse `(+ (+ 1 2) 3))
- Exp
(plus (plus (num 1) (num 2)) (num 3))

A parser for calc
• Start with its signature:

• Some tests:

(test (parse `1) (num 1))
(test (parse `{+ 1 2}) (plus (num 1) (num 2)))
(test/exn (parse `{1 + 2}) "")

38

(parse : (S-Exp -> Exp))
(define (parse s)
 ???)

A parser for calc
• Fill in the cases:

39

(parse : (S-Exp -> Exp))
(define (parse s)
 (cond
 [(s-exp-number? s)
 ???]
 [(s-exp-list? s)
 ???]
 [else (error 'parse "not recognized")]))

