CS4400/5400
Programming Aanguages

Lecture 3

Interpreters & abstract syntax
Spring 2024

Instructor: Steven Holtzen
s.holtzen@northeastern.edu

‘ \ ‘ Northeastern University
Khoury College of Computer

and Information Sciences

mailto:s.holtzen@northeastern.edu

Goals for today

1. Build calc, our very first language in Plait
2. Learn how to run an interpreter by hand
3. Understand abstract syntax

4. If time: parsing

Logistics

* Reminder: Homework #2 due Wednesday

* Next homework coming out Wednesday, due Friday Feb
2

e At this point, you should be quite comfortable
programming in Plait

e Course webpage up (see Canvas syllabus page)

« https://pages.github.khoury.northeastern.
edu/sholtzen/cs4400-spr24/

https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-spr24/
https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-spr24/

What is our eventual goal?

* We are going to give the syntax and semantics for
calc:

> (calc (parse "(+ 1 2)))

— Number

3

> (calc (parse "(+ 1 (+ 2 3))))
— Number

6 .

Recall: syntax and semantics

Syntax Semantics

What does a program look like? What does a program do?
Python
X =15 « (Create a variable
print(x) called “x”

* Print the contents of
that variable

Recall: syntax and semantics

Semantics
Syntax What does a program do?

What does a program look like?

Programs that run
Formal descriptions as programs
grammars
Interpreters!

Syntax

The presentation of programs

Goal

* Give the syntax for a tiny calculator programming
language
e Support numbers and addition
* Be able to write programs like “1 + 2” and “3 + 4 + 10”

Parsing spoken language

e Sentences are formed by building complex phrases out of
smaller ones

* The rules for this process are called grammars

* A noun is an object

n

* “dog”, “Steven”, ...

e Averb is an action

n u

e “eats”, “cuts’, ...

* A tiny sentence consists of a noun (subject), a verb, and a
noun (object)
» “Steven eats food”

Parsing spoken language

* Sentence parsing: extracting the grammatical
structure of a sentence from its presentation

S
/\ \ >0
NV N
) \ \ N. Chomsky

Phrase structure grammar

Steven eats food

10

What is the syntax of programs?

* Syntax is the presentation of a program
* What you give to the computer
* Text, diagrams, etc.

N] [Z]
(+12) 1—< v

S-exp 1+2+3
Infix

Circuit
* There is wide variability in program syntax
* People have different aesthetic preferences

Abstract syntax

* First big idea: Abstract away the details of the

program presentation
\‘
\ 2

(+ 1 2)
1 + 2

| 2]
N/

Surface syntax Abstract syntax

: (E:asy for prc:jgrarr;quni.rs tlcl) w:nte _ * Easy for computers to understand
onusi an aei € |.ca_y P .eas.mg * Precise and unambiguous
* Called “Surface” to distinguish it from .

“abstract”

Abstract syntax tree (AST)

* An AST is a tree-based representation of surface-
syntax
* Each node in the tree is called a term
* The child of a term is a sub-term

* Translating surface syntax to abstract syntax is called
parsing

++
/7N

+ Ay
/\

\ L

1+2 + 3

13

Representing ASTs in Plait

(define-type Exp
[num (n : Number)]
[plus (left : Exp) (right : Exp)l)

1+
7 > (plus (plus (num 1) (num 2)) (num 3))
"%’ S - Exp
//\\\ (plus (plus (num 1) (num 2)) (num 3))

Some exerclses

* Build the ca lc AST for the expression (written
with infix notation):

((1+2)+(3+4))+5

 Build the calc AST for the expression (written with
s-expression notation):

(+(+(+12)(+34))5)

Ponder

* We could have chosen an alternative datatype for
calc:

(define-type Exp
[num (n : Number)]
[plus (left : (Listof Exp))])

* What are the pros and cons of this choice of
abstract syntax?

Semantics

The meaning of programs

What is semantics?

* Associate syntactic with a meaning

Steven has a cat

18

Semantics of calc N

* Give a meaning to every term /\
by describing what they evaluate to) L

* Numbers evaluate to numbers

+
7\

* To evaluate , first evaluate el, then e2,

then evaluate their sum

Evaluating by hand

* To evaluate by hand, draw a sequence of steps

N +

¥ N —
A — s

2\ o S

) L

€\

“first evaluate el"

20

Implementing an evaluator in Plait

(calc : (Exp —> Number)) Start by writing the type

(define (calc e) and the shape of the
777) function

21

Implementing an evaluator in Plait

(calc : (Exp —> Number)) Following the design recipe,
(define (calc e) we can fill in the type-case
(type-case Exp e to destruct the argument
[(num n) ?77]
[(plus 1 r) ?7?))

22

Implementing an evaluator in Plait

(calc : (Exp —> Number)) The base case is easy:
(define (calc e) “Numbers evaluate to
(type-case Exp e numbers”

[(num n) n]
[(plus el e2) ??7))

23

Implementing an evaluator in Plait

(calc : (Exp —> Number)) The inductive case: first

(define (calc e) evaluate el, then e2,

(type-case Exp e then evaluate their sum
[(num n) nl

[(plus el e2)

(+ (calc el) (calc e2))]))

This program is called an interpreter for calc,

and it gives the precise semantics of cal ¢ programs

24

Interpreting (running)
ca lc programs

>

10

>

SOV W |

(calc (num 10))
Number

(calc (plus (num 1) (num 2)))

Number

(calc (plus (plus (num 1)
Number

(num 2))

(num 3)))

25

Syntax and semantics of ca L C

Abstract syntax Semantics
(define-type Exp (calc : (Exp —> Number))
[num (n : Number)] (define (calc e)
[plus (left : Exp) (type-case Exp e
(right : Exp)l) [(num n) n]

[(plus el e2)
(+ (calc el)
(calc e2))1))

Ponder

 We could have chosen an alternative semantics for
ca lc where we evaluate e2 before el:

(calc : (Exp —> Number))
(define (calc e)
(type-case Exp e
[(num n) n]
[(plus el e2)
(+ (calc e2) (calc el1))]))

* Is this semantics fundamentally different from the
one that evaluates el first? Why or why not?

Ponder

* Suppose we were using our list-based abstract
syntax from earlier:

(define-type Exp
[num (n : Number)]
[plus (left : (Listof Exp))])

* What should the semantics of the plus with an
empty list be? What should we do?

* (there is no right answer here; there are pros and cons)

Parsing

From syntax to abstract syntax

Surface syntax

* We want to release our ca lC program to the world

* One option: make programmers simply give us ca lc
ASTs

(plus (plus (num 1) (num 2)) (num 3))

* This is a bit undesirable; why do they need to tell us 1 is
a number, and | would like to use “+” instead of “plus”

* As our languages get more complex, such small annoyances
become unbearable

Surface syntax

* What surface syntax should we choose for our
ca lLc language? We can choose many...

* Let’s choose s-expressions!

(+ 1 (+ 2 3))

* Plait has very good built-in support for parsing and
manipulating s-expressions

The s-expression datatype

* Every s-expression is either:

* A constant (Boolean, empty list, number, symbol, string
character)

A list of Plait s-expressions

. . Fun fact: Plait
* We could write this as a datatype: Drograms are s

expressions!

(define-type S—-Expr
[bool (b : Boolean)]
[empty]
[num (n : Number)]
[symbol (s : Symbol)]
[string (s : String)]
[list (1 : (Listof S—-Expr))])

32

Constructing s-expressions

* S-expressions are a built-in Plait datatype
e Constructed using a backtick

> 1

- S—-Exp
"1

> ftt
- S—-Exp
Tf#t

> “dog
- S—-Exp
“dog

Constructing s-expressions

* The backtick turns a Plait term into an s-expression

> "(+ 1 2)

- S—-Exp

(+12) We can also use curly
> " (hello + world 123) braces *{+ 1 2}
- S—-Exp

“(hello + world 123)

> " (what (are you) doing)
- S-Exp

“(what (are you) doing)

> " (+ (+ 1 2) 3)

- S—-Exp

(+ (+ 1 2) 3)

34

Testing s-expressions

> (s—exp-number? "10)
- Boolean
#t

> (s—exp—-number? "t)
- Boolean
#f

> (s—exp-boolean? #t)
— Boolean
#t

> (s—exp-symbol? “hello)
- Boolean
#t

> (s—exp-list? “(1 2 3))
- Boolean
#t

Destructing s-expressions

> (s—exp—>boolean " #t)
- Boolean
#t

> (s—exp—>boolean "oops)
— Boolean
. s—exp—>boolean: not a boolean: "oops

> (s—exp—>number "10)
— Number
10

> (s—exp—>symbol 'hello)

. typecheck failed: S-Exp vs. Symbol in:
s—exp—>symbol
(quote hello)

> (s—exp—>symbol "hello)
— Symbol
"hello

> (s—exp—>list “(1 2 3))
- (Listof S-Exp)
(list "1 2 *3)

S-expressions as €a LC syntax

* We will use s-expressions to give a convenient
surface syntax to ca lc

> (parse “(+ (+ 1 2) 3))
- Exp
(plus (plus (num 1) (num 2)) (num 3))

A parser for ca lcC

 Start with its signature:

(parse : (S—-Exp —> Exp))

(define (parse s)
?7?7)

* Some tests:

(test (parse “1) (num 1))
(test (parse "{+ 1 2}) (plus (num 1) (num 2)))
(test/exn (parse {1 + 2}) "")

A parser for ca lcC

e Fill in the cases:

(parse : (S-Exp —> Exp))
(define (parse s)
(cond

[(s—exp—number? s)
??27]
[(s—exp-1ist? s)
??27]
[else (error 'parse "not recognized")]))

