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Goals for today

1. Build calc, our very first language in Plait

2. Learn how to run an interpreter by hand

3. Understand abstract syntax

4. If time: parsing
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Logistics

• Reminder: Homework #2 due Wednesday

• Next homework coming out Wednesday, due Friday Feb 
2

• At this point, you should be quite comfortable 
programming in Plait

• Course webpage up (see Canvas syllabus page)
• https://pages.github.khoury.northeastern.
edu/sholtzen/cs4400-spr24/
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https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-spr24/
https://pages.github.khoury.northeastern.edu/sholtzen/cs4400-spr24/


What is our eventual goal?

• We are going to give the syntax and semantics for 
calc:
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Recall: syntax and semantics
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Syntax
What does a program look like?

Python

Semantics
What does a program do?

x = 5
print(x)

• Create a variable 
called “x”

• Print the contents of 
that variable



Recall: syntax and semantics
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Syntax
What does a program look like?

Formal descriptions as 
grammars

Semantics
What does a program do?

Programs that run 
programs

Interpreters!



Syntax
The presentation of programs
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Goal

• Give the syntax for a tiny calculator programming 
language
• Support numbers and addition
• Be able to write programs like “1 + 2” and “3 + 4 + 10”

8



Parsing spoken language

• Sentences are formed by building complex phrases out of 
smaller ones
• The rules for this process are called grammars

• A noun is an object
• ”dog”, “Steven”, …

• A verb is an action
• “eats”, “cuts”, …

• A  tiny sentence consists of a noun (subject), a verb, and a 
noun (object)
• “Steven eats food”
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Parsing spoken language

• Sentence parsing: extracting the grammatical 
structure of a sentence from its presentation
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Steven eats food
N. Chomsky
Phrase structure grammar



What is the syntax of programs?

• Syntax is the presentation of a program
• What you give to the computer
• Text, diagrams, etc.

• There is wide variability in program syntax 
• People have different aesthetic preferences
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(+ 1 2)

1 + 2 + 3
Infix

S-exp

Circuit



Abstract syntax

• First big idea: Abstract away the details of the 
program presentation
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(+ 1 2)
1 + 2

Parse

Surface syntax Abstract syntax
• Easy for programmers to write
• Concise and aesthetically pleasing
• Called “Surface” to distinguish it from 

“abstract”

• Easy for computers to understand
• Precise and unambiguous



Abstract syntax tree (AST)

• An AST is a tree-based representation of surface-
syntax
• Each node in the tree is called a term
• The child of a term is a sub-term
• Translating surface syntax to abstract syntax is called 

parsing
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1 + 2 + 3 Parse



Representing ASTs in Plait
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(define-type Exp
    [num (n : Number)]
    [plus (left : Exp) (right : Exp)])

> (plus (plus (num 1) (num 2)) (num 3))
- Exp
(plus (plus (num 1) (num 2)) (num 3))



Some exercises

• Build the calc AST for the expression (written 
with infix notation):

((1 + 2) + (3 + 4)) + 5

• Build the calc AST for the expression (written with 
s-expression notation):

(+ (+ (+ 1 2) (+ 3 4)) 5)
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Ponder 

• We could have chosen an alternative datatype for 
calc:

• What are the pros and cons of this choice of 
abstract syntax?
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(define-type Exp
    [num (n : Number)]
    [plus (left : (Listof Exp))])



Semantics
The meaning of programs
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What is semantics?

• Associate syntactic with a meaning
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Steven has a cat



Semantics of calc
• Give a meaning to every term

by describing what they evaluate to

• Numbers evaluate to numbers
• To evaluate , first evaluate e1, then e2, 

then evaluate their sum
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Evaluating by hand

• To evaluate by hand, draw a sequence of steps
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“first evaluate e1"



Implementing an evaluator in Plait
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(calc : (Exp -> Number))
(define (calc e)
  ???)

Start by writing the type 
and the shape of the 

function



Implementing an evaluator in Plait
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(calc : (Exp -> Number))
(define (calc e)
  (type-case Exp e
    [(num n) ???]
    [(plus l r) ???))

Following the design recipe, 
we can fill in the type-case 
to destruct the argument



Implementing an evaluator in Plait
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(calc : (Exp -> Number))
(define (calc e)
  (type-case Exp e
    [(num n) n]
    [(plus e1 e2) ???))

The base case is easy: 
“Numbers evaluate to 

numbers”



Implementing an evaluator in Plait
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(calc : (Exp -> Number))
(define (calc e)
  (type-case Exp e
    [(num n) n]
    [(plus e1 e2) 
       (+ (calc e1) (calc e2))]))

The inductive case: first 
evaluate e1, then e2, 

then evaluate their sum 

This program is called an interpreter for calc, 
and it gives the precise semantics of calc programs



Interpreting (running)
calc programs
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Syntax and semantics of calc
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Abstract syntax Semantics

(define-type Exp
    [num (n : Number)]
    [plus (left : Exp) 
           (right : Exp)])

(calc : (Exp -> Number))
(define (calc e)
  (type-case Exp e
    [(num n) n]
    [(plus e1 e2) 
       (+ (calc e1)    
          (calc e2))]))



Ponder 

• We could have chosen an alternative semantics for 
calc where we evaluate e2 before e1:

• Is this semantics fundamentally different from the 
one that evaluates e1 first? Why or why not?
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(calc : (Exp -> Number))
(define (calc e)
  (type-case Exp e
    [(num n) n]
    [(plus e1 e2) 
       (+ (calc e2) (calc e1))]))



Ponder 

• Suppose we were using our list-based abstract 
syntax from earlier:

• What should the semantics of the plus with an 
empty list be? What should we do? 
• (there is no right answer here; there are pros and cons)
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(define-type Exp
    [num (n : Number)]
    [plus (left : (Listof Exp))])



Parsing
From syntax to abstract syntax
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Surface syntax

• We want to release our calc program to the world

• One option: make programmers simply give us calc
ASTs

• This is a bit undesirable; why do they need to tell us 1 is 
a number, and I would like to use “+” instead of “plus”

• As our languages get more complex, such small annoyances 
become unbearable
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(plus (plus (num 1) (num 2)) (num 3))



Surface syntax

• What surface syntax should we choose for our 
calc language? We can choose many…
• Let’s choose s-expressions!

• Plait has very good built-in support for parsing and 
manipulating s-expressions
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(+ 1 (+ 2 3))



The s-expression datatype

• Every s-expression is either:
• A constant (Boolean, empty list, number, symbol, string 

character)
• A list of Plait s-expressions

• We could write this as a datatype:
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(define-type S-Expr
  [bool (b : Boolean)]
  [empty]
  [num (n : Number)]
  [symbol (s : Symbol)]
  [string (s : String)]
  [list (l : (Listof S-Expr))])

Fun fact: Plait 
programs are s-

expressions!



Constructing s-expressions

• S-expressions are a built-in Plait datatype
• Constructed using a backtick `
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> `1
- S-Exp
`1
> `#t
- S-Exp
`#t
> `dog
- S-Exp
`dog



Constructing s-expressions

• The backtick turns a Plait term into an s-expression
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> `(+ 1 2)
- S-Exp
`(+ 1 2)
> `(hello + world 123)
- S-Exp
`(hello + world 123)
> `(what (are you) doing)
- S-Exp
`(what (are you) doing)
> `(+ (+ 1 2) 3)
- S-Exp
`(+ (+ 1 2) 3)

We can also use curly 
braces `{+ 1 2}



Testing s-expressions
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> (s-exp-number? `10)
- Boolean
#t

> (s-exp-number? `t)
- Boolean
#f

> (s-exp-boolean? `#t)
- Boolean
#t

> (s-exp-symbol? `hello)
- Boolean
#t

> (s-exp-list? `(1 2 3))
- Boolean
#t



Destructing s-expressions
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> (s-exp->boolean `#t)
- Boolean
#t

> (s-exp->boolean `oops)
- Boolean
. . s-exp->boolean: not a boolean: `oops

> (s-exp->number `10)
- Number
10

> (s-exp->symbol 'hello)
. typecheck failed: S-Exp vs. Symbol in:
  s-exp->symbol
  (quote hello)

> (s-exp->symbol `hello)
- Symbol
'hello

> (s-exp->list `(1 2 3))
- (Listof S-Exp)
(list `1 `2 `3)



S-expressions as calc syntax

• We will use s-expressions to give a convenient 
surface syntax to calc
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> (parse `(+ (+ 1 2) 3))
- Exp
(plus (plus (num 1) (num 2)) (num 3))



A parser for calc
• Start with its signature:

• Some tests:

(test (parse `1) (num 1))
(test (parse `{+ 1 2}) (plus (num 1) (num 2)))
(test/exn (parse `{1 + 2}) "")
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(parse : (S-Exp -> Exp))
(define (parse s)
  ???)



A parser for calc
• Fill in the cases:

39

(parse : (S-Exp -> Exp))
(define (parse s)
  (cond
    [(s-exp-number? s)
     ???]
    [(s-exp-list? s)
     ???]
    [else (error 'parse "not recognized")]))


