
CS4400/5400
Programming 𝜆anguages

Lecture 4
Parsing and conditionals

Spring 2024
Instructor: Steven Holtzen

s.holtzen@northeastern.edu

mailto:s.holtzen@northeastern.edu

Goals for today

1. Finish parsing and running calc programs
• Host semantics
• How to read grammars
• Parsing s-expressions

2. Develop cond, extending calc with conditionals
• See the design space of if-expressions
• Create an evaluator for cond
• The value datatype

2

Logistics

• New homework released tonight
• Due next Wednesday (Jan 31), recommend you start

• Reminder: course materials on course webpage now
instead of Canvas (see link on canvas)
• All slides, code, etc. goes there

• I’ve been tweaking the schedule a bit based on our
pace, check it for latest reading

• Reminder: I am fairly closely following PLAI, use it as a
resource

3

Syntax and semantics of calc

4

Abstract syntax Semantics

(define-type Exp
 [num (n : Number)]
 [plus (left : Exp)
 (right : Exp)])

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) n]
 [(plus e1 e2)
 (+ (calc e1)
 (calc e2))]))

Host semantics

• I never actually told you what syntactic “+” did

• The semantics of “plus” in calc is inherited from
Plait’s semantics of “+”
• calc inherited the host semantics of “+” from Plait

5

(calc : (Exp -> Number))
(define (calc e)
 (type-case Exp e
 [(num n) n]
 [(plus e1 e2)
 (+ (calc e1)
 (calc e2))]))

Host semantics

• Q: What is Plait’s semantics of “+”?

• A: A function of type
(Number Number -> Number)

• Takes two arguments of Plait type Number and
produces their arithmetic sum

• There are alternative semantics of “+”: perhaps it
permits concatenating strings, etc…

6

Host semantics

• In turn, Plait’s semantics of ”+” are inherited from
Racket…
• … which is inherited from Chez scheme…
• ... which is inherited from the assembly language

instruction standard for running addition…

7

assembly chez
scheme

racket calc

Parsing & grammars

• Goal of parsing: given a surface syntax description
of a program, generate an abstract syntax tree

8

(+ 1 (+ 2 3))

How do we describe
surface syntax? We call a

description of surface
syntax a grammar

Parsing

Describing grammars in English

• An calc expression is either:
• A number
• A string of the form “(“ followed by “+” followed by an

expression followed by an expression followed by “)”

• This gets quite unwieldy to write down as our
language gets increasingly complex
• The designers of ALGOL60 agreed, so designed a

system for describing surface syntax grammars
called Backus-Naur Form

9

• BNF is a lightweight notation for describing surface
syntax

• This grammar captures our English description of
calc expressions
• The symbol <e> is called a non-terminal
• The symbol num is called a terminal: it is defined to be

any syntactic Plait number (0.1, 10, 1/2, …
• One symbol is designated as the start symbol

Describing Surface Syntax with
Backus-Naur Form (BNF)

10

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

BNF and Plait Datatypes

• There is a one-to-one map between a BNF and our
abstract syntax tree datatype in Plait
• The BNF includes details about the text (i.e., contains

characters)

11

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

(define-type Exp
 [num (n : Number)]
 [plus (left : Exp) (right : Exp)]
)

Parsing with BNF

12

(+ 1 (+ 2 3))

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

<e>

Parsing with BNF

13

(+ 1 (+ 2 3))

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

num? no

Parsing with BNF

14

(+ 1 (+ 2 3))

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

<plus>

<e> (+ <e>)

Parsing with BNF

15

(+ 1 (+ 2 3))

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

<plus>

num(+ <e>)

Parsing with BNF

16

(+ 1 (+ 2 3))

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

<plus>

num(+ <plus>)

<e>(+ <e>)

Parsing with BNF

17

(+ 1 (+ 2 3))

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

<plus>

num(+ <plus>)

<num>(+ <num>)

This diagram is
called a parse tree

Parse errors

• A parse error occurs when there are no rules to
apply

18

<plus> ::= (+ <e> <e>)
<e> ::= num | <plus>
<start> ::= <e>

+ 1 2)

Parsing ambiguity

• Suppose we have the following grammar for infix
addition:

• Then, we have two valid parse trees:

19

<plus> ::= <e> + <e>
<e> ::= num | <e> + <e>

If there exists a
sentence with
more than 1

parse tree, we
call a grammar
ambiguous

Parsing with BNF

• There are many tools that, given a BNF grammar,
automatically generate a parser for you
• Example: antlr https://www.antlr.org/

20

https://www.antlr.org/

Parsing with s-expressions in Plait

• We don’t need to worry about going from strings to
plait datatypes: we can use Plait’s parser

21

`(+ 1 2)
- S-Exp
`(+ 1 2)

Shorthand for:
(list->s-exp
 (list (symbol->s-exp ‘+)
 (number->s-exp 1)
 (number->s-exp 2)))

From s-expressions to calc

22

(define-type Expr
 [num (n : Number)]
 [plus (l : Expr) (r : Expr)])

(parse : (S-Exp -> Expr))
(define (parse e)
 (cond
 [(s-exp-number? e) (num (s-exp->number e))]
 [else (error 'parse "unrecognized symbol")]))

From s-expressions to calc

23

(define-type Expr
 [num (n : Number)]
 [plus (l : Expr) (r : Expr)])

(parse : (S-Exp -> Expr))
(define (parse e)
 (cond
 [(s-exp-number? e) (num (s-exp->number e))]
 [(s-exp-list? e) ???]
 [else (error 'parse "unrecognized symbol")]))

An aside on let and local
• Local defines a new scope: any definitions occurring

inside local are only in scope from inside its body

24

> (local [(define x 10)] x)
- Number
10

> (local [(define x 10) (define y 30)] (+ x y))
- Number
40

> (+ x y)
. x: free variable while typechecking in: x

List of definitions

Body

An aside on let and local
• let declares local variables (short-hand for local):

25

> (let [(x 10) (y 20)] (+ x y))
- Number
30

List of variable
declarations

Body

letrec
• letrec declares local variables that can refer to

each other:

26

> (letrec [(x 10) (y (+ x 20))] (+ x y))
- Number
40

List of variable
declarations

Body

From s-expressions to calc

27

(define-type Expr
 [num (n : Number)]
 [plus (l : Expr) (r : Expr)])

(parse : (S-Exp -> Expr))
(define (parse e)
 (cond
 [(s-exp-number? e) (num (s-exp->number e))]
 [(s-exp-list? e)
 (let ([l (s-exp->list e)])
 (error 'parse ""))]
 [else (error 'parse "unrecognized symbol")]))

From s-expressions to calc

28

(define-type Expr
 [num (n : Number)]
 [plus (l : Expr) (r : Expr)])

(parse : (S-Exp -> Expr))
(parse : (S-Exp -> Expr))
(define (parse e)
 (cond
 [(s-exp-number? e) (num (s-exp->number e))]
 [(s-exp-list? e)
 (let ([l (s-exp->list e)])
 (cond
 [(empty? l) (error 'parse "empty list")]
 [(symbol=? (s-exp->symbol (first l)) '+) (plus (parse
(second l)) (parse (third l)))]
 [else (error 'parse "unrecognized symbol")]))]
 [else (error 'parse "unrecognized s-exp")]))

It is OK in this class if
your parser fails with a
contract error (though,
if you like, you can add
specific errors for this;

we won’t test this

Conditionals
The language cond
https://gist.github.com/SHoltzen/8ec4d0ec
1619a623ff8a4779072eb660

29

https://gist.github.com/SHoltzen/8ec4d0ec1619a623ff8a4779072eb660
https://gist.github.com/SHoltzen/8ec4d0ec1619a623ff8a4779072eb660

A proposed cond AST

30

(define-type Expr
 [num (n : Number)]
 [plus (l : Expr) (r : Expr)]
 [cnd (guard : Expr) (thn : Expr) (els : Expr)])

Semantics of cond
• Currently our calc language has a single value type:

numbers
• One option for semantics of cnd: if the guard is

zero, evaluate the then branch; else evaluate the
else branch

31

Many languages have somewhat
interesting semantics for if…

32

Many languages have somewhat
interesting semantics for if…

33

An evaluator

34

(define-type Expr
 [num (n : Number)]
 [plus (l : Expr) (r : Expr)]
 [cnd (guard : Expr) (thn : Expr) (els : Expr)])

(define (calc e)
 (type-case Expr e
 [(num v) v]
 [(plus l r) (+ (calc l) (calc r))]
 [(cnd guard thn els)
 (if (equal? 0 (calc guard))
 (calc thn)
 (calc els))]))

How are we using
host semantics

here? What are the
consequences of

that?

Cond with Booleans: Syntax

35

(define-type Exp
 [num (n : Number)]
 [bool (b : Boolean)]
 [plus (left : Exp) (right : Exp)]
 [cnd (test : Exp) (thn : Exp) (els : Exp)])

Cond with Booleans: Semantics

• If the guard evaluates to #t, evaluate thn; if guard
evaluates to #f, evaluate els; otherwise, error

36

Developing an evaluator

• We will walk through developing this in class:

https://gist.github.com/SHoltzen/8e
c4d0ec1619a623ff8a4779072eb660

37

https://gist.github.com/SHoltzen/8ec4d0ec1619a623ff8a4779072eb660
https://gist.github.com/SHoltzen/8ec4d0ec1619a623ff8a4779072eb660

